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1 Introduction to Analytic Combinatorics

1.1 Analysis of Algorithms
1.1.1 Charles Babbage 1840

“As soon as an Analytics Engine exists, it will necessarily guide the future course of
science. Whenever any result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the machine in the shortest
time?”

Charles Babbage’s vision of computational efficiency predates modern computer science by
over a century. His Analytical Engine was the first general-purpose computer design.

1.2 Analysis of Algorithms

1.2.1 Ada Lovelace 1860

First computer program to calculate the Bernoulli numbers using the analytical
engine.

Ada Lovelace wrote the first algorithm intended to be processed by a machine, making her
arguably the first computer programmer.

1.3 Recalling Big-O

Definition: Big-O notation describes the upper bound (worst case) of the time complexity
(speed) or space complexity (storage) of an algorithm.

Purpose: Helps predict how an algorithm will perform as the input size grows.

Use Case: Essential in computer science for comparing the efficiency of algorithms.

Why are we focused on time and space so much?

1.4 Time and Space Complexity

¢ Time Complexity: Measures how the runtime of an algorithm changes relative to the
input size.

¢ Space Complexity: Measures how the amount of memory needed by an algorithm
changes with input size.



1.5 Big-O Complexity Classes

Notation Name Description

0(1) Constant Time Execution remains constant regardless
of input size

O(logn) Logarithmic Time Execution time increases logarithmically

O(n) Linear Time Execution time increases linearly

O(nlogn) Linearithmic Time FExecution time increases linearly and
logarithmically combined

O(n?) Quadratic Time Execution time increases quadratically

O(n?) Cubic Time Execution time increases cubically

o(2m) Exponential Time Execution time doubles with each
additional element

O(n!) Factorial Time Execution time increases factorially

1.6 Problems with Big-O
1.6.1 Example: Two sorting algorithms

1.6.1.1 Quicksort
o Worst-case number of compares: O(n?)
e Classification: O(n?)

1.6.1.2 Mergesort

o Worst-case number of compares: O(nlogn)
o Classification: O(nlogn)

BUT... ACTUALLY!

Quicksort is actually twice as fast as Mergesort and uses half the space.

1.7 Theory of Algorithms
1.7.1 Other Notations - Formal Definitions

o “Big-O” for upper bounds

— g(N)=0O(f(N)) < |g(N)/f(N)| is bounded from above as N — oo

— Worst case



¢ “Big-Omega” for lower bounds

— g(N)=Q(f(N)) < |g(N)/f(N)] is bounded from below as N — oo
— Best case

o “Big-Theta” for order of growth

— 9(N) =O(f(N)) < O(f(N)) and g(N) = Q(f(N))
— Exact (“within a constant factor”)

Big-O: growth rate of function g(n) is bounded above by f(n) as n approaches infinity. Big-
Omega: growth rate of function g(n) is bounded below by f(n) as n approaches infinity.
Big-Theta: captures a tighter bound - g(n) neither grows significantly faster nor slower than

f(n).

1.8 Big-O Limitations

¢ Pessimistic View: Big O primarily describes worst-case performance

¢« Not Always Representative: Many algorithms rarely encounter worst-case scenarios

¢ Overemphasis on Asymptotic Behavior: May not be relevant for moderate input
sizes

1.9 Big-Omega Limitations

e Overly Optimistic: Describes best-case performance which rarely occurs
o Rarely Applicable: Most real-world problems don’t operate under best-case conditions

1.10 Big-Theta Limitations

¢ Ignores Variability: Indicates growth rate in both best and worst cases
« Rarely Applicable: By averaging performance, critical nuances might be obscured

1.11 Analysis of Algorithms
1.11.1 Current State of the Art

Traditional approach: > Analyze worst case scenario and use Big-O notation for the upper
bound.

But...

Don’t despair!

WE CAN DO BETTER!



1.12 Analysis of Algorithms

1.12.1 Don Knuth 1960

To analyze an algorithm:

Develop a good implementation.

Identify unknown quantities representing the basic operation.
Determine the cost of the basic operation.

Develop a realistic model.

Analyze the frequency of execution of the unknown quantities.
Calculate the total running time:

S G W=

Z frequency(q) x cost(q)

Donald Knuth advocates for detailed and rigorous algorithm analysis, accounting for all elements
that influence performance including hardware specifics and input data patterns.

1.13 Analysis of Algorithms
1.13.1 Limitations of Knuth’s Approach

e Model may still be too unrealistic
e There is too much detail in the analysis

1.14 Analysis of Algorithms

1.14.1 We Need a Middle Ground

@ Analytic Combinatorics

e A calculus for developing models
o General theorems that avoid detail in analysis




1.15 What is Analytic Combinatorics?
1.15.1 Definition

Analytic Combinatorics is the quantitative study of the properties of discrete structures.

An application of Analytical Combinatorics is the analysis of algorithms.

1.16 Why Analyze Algorithms?
1.16.1 Motivation

e C(lassify problems and algorithms by difficulty

e Predict performance, compare algorithms, tune parameters

e Better understand and improve implementations of algorithms

e Intellectual challenge. Sometimes it can be more interesting than programming.

1.17 Analysis of Algorithms
1.17.1 Approach

1. Start with complete implementation suitable for application testing

2. Analyze the algorithm by:

e Identify an abstract operation in the inner loop
e Develop a realistic model for the input to the program
e Analyze the frequency of execution C'y of the op for input size NV

3. Hypothesize that the cost is ~ aCy where a is a constant

4. Validate the algorithm by:

¢ Developing generator for input according to model
e Calculate a by running the program for large input
e Run the program for larger inputs to check the analysis

5. Validate the model by testing in application contexts



1.18 Theory of Algorithms
1.18.1 Notation

For theory of algorithms: - “Big-O” for upper bounds - “Big-Omega” for lower bounds
- “Big-Theta” for order of growth

For analysis to predict performance:

“Tilde” notation for asymptotic equivalence

g(N) ~ f(N) < |g(N)/f(N)| = 1as N = o0

1.19 Analysis of Algorithms
1.19.1 Component #1: Empirical

e Run algorithm to solve real problem
e Measure running time or count operations

Challenge: need good implementation

> python sort_test 1000000

N EMPIRICAL

10 44 .44

100 847.85
1000 12985.91
10000 175771.70
100000 22180563.41

1.20 Analysis of Algorithms
1.20.1 Component #2: Mathematical

e Develop mathematical model
¢ Analyze algorithm with model

Challenge: need good model. Need to do the math.

1
1<k<N



1.21 Analysis of Algorithms
1.21.1 Component #3: Scientific

e Run algorithm to solve real problems
e Check for agreement with model

Challenge: need all of the above

> python sort_test.py 1000000

N EMPIRICAL SCIENTIFIC

10 44 .44 26.05

100 847.85 721.03
1000 12985.91 11815.51
10000 175771.70 164206.81
100000 2218053.41 2102585.09

2 Let’s Try It!

2.1 Analysis of TwoSum Algorithm

@ Tip

Start a Jupyter Notebook or Python file so you can follow along. I will ask you to turn
this artifact in for participation points once we complete the lecture.

2.2 Analysis of 2Sum Algorithm
2.2.1 Qutline

Observations

Develop Mathematical model
Order of Growth

Theory of Algorithms
Memory

AR o



2.3 Analysis of HW 1
2.3.1 2Sum Problem

Problem: Given N distinct integers, how many pairs sum to exactly 07

Relevance: Fundamental problem in computer science with applications in:

Database operations (finding matching pairs)

o Financial analysis (finding offsetting transactions)

o Network analysis (finding complementary connections)
o Computational geometry (finding antipodal points)

2.4 2Sum Brute Force Solution

def two_sum(arr):

Count pairs that sum to exactly O
nnn

count = 0
n = len(arr)

for i in range(n):
for j in range(i + 1, n):

10

11

12

13

10

11

2.5

if arr[i] + arr[j] ==
count += 1

return count

2Sum Empirical Analysis Setup

import time
import random

import numpy as np
import matplotlib.pyplot as plt

def

generate_test_data(n):

"""Generate n distinct random integers"""
# Create a set to ensure distinct values
data = set()

while len(data) < n:

# Generate random integers in range [-n*10, nx*10]



12 val = random.randint(-n*10, n*10)
13 data.add(val)

14 return list(data)

15

16 def time_two_sum(n):

17 """Time the two_sum function for input size n"""
18 data = generate_test_data(n)

19

20 start_time = time.perf_counter()

21 count = two_sum(data)

22 end_time = time.perf_counter()

23

24 elapsed_time = end_time - start_time

25 return elapsed_time

2.6 2Sum Empirical Data Collection

1 def run_experiments():

2 """Run experiments for different input sizes"""
3 sizes = [1000, 2000, 4000, 8000, 16000]

1 times = []

5

6 print(£"{'N':>10}{'Time (seconds)':>20}")

7 print("=" * 30)

8

9 for n in sizes:

10 # Run multiple trials and take average

11 trial times = []

12 for _ in range(3): # 3 trials per size

13 trial_time = time_two_sum(n)

14 trial_times.append(trial_time)

15

16 avg_time = sum(trial_times) / len(trial_times)
17 times.append (avg_time)

18 print(£"{n:10}{avg_time:20.4£f}")

19

20 return sizes, times

21
22 # Run the experiments
23 sizes, times = run_experiments()

N Time (seconds)

10



10

11

12

14

15

16

17

2000 0.0714
4000 0.2559
8000 1.0136
16000 4.1684

2.7 2Sum Standard Plot

# Create standard plot
fig, axl = plt.subplots(figsize=(10, 10))

# Standard scale plot

axl.plot(sizes, times, 'bo-', linewidth=2, markersize=8)
axl.set_xlabel('Input Size (N)', fontsize=12)
axl.set_ylabel('Time (seconds)', fontsize=12)
axl.set_title('2Sum Algorithm Performance', fontsize=14)
axl.grid(True, alpha=0.3)

# Add annotations
for i, (x, y) in enumerate(zip(sizes, times)):
axl.annotate(f'({x}, {y:.2f}1"',
xy=(x, y),
xytext=(5, 5),
textcoords='offset points',
fontsize=9)

11



2Sum Algorithm Performance
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2.8 2Sum Log-Log Plot
# Log-log plot
fig, ax2 = plt.subplots(figsize=(6, 4))
ax2.loglog(sizes, times, 'ro-', linewidth=2, markersize=8, label='Empirical')

ax2.set_xlabel('Input Size (N) - log scale', fontsize=12)
ax2.set_ylabel ('Time (seconds) - log scale', fontsize=12)
ax2.set_title('2Sum Log-Log Plot', fontsize=14)

12
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ax2.grid(True, which="both", ls="-", alpha=0.2)
ax2.legend ()

plt.tight_layout ()

plt.show()
25um Log-Log Plot
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2.9 Power Law Relationship

! Understanding the Power Law
In a log-log plot, a straight line indicates a power law relationship:

T(N)=a-N°
Where:

o T(N) is the execution time

e N is the input size

e a is the scaling constant

b is the exponent (slope in log-log plot)

13




Taking logarithms of both sides:
log(T'(N)) = log(a) + b - log(N)

This is a linear equation in log space with slope b!

2.10 Calculate Slope (solve for b)

Using two data points to calculate the slope:

_ log(7T,) — log(T})
log(N,) — log(N;)

Using our data points (4000, 0.6734) and (8000, 2.6951):

import math

# Calculate slope using two points
N1, T1 = 4000, 0.6734
N2, T2 = 8000, 2.6951

b = (math.logl10(T2) - math.logl0(T1)) / (math.logl0(N2) - math.loglO(N1))
print (f"Calculated slope b = {b:.4f}")

10

11

12

# Alternative: Using natural logarithm
b_1n = (math.log(T2) - math.log(T1)) /
print (f"Slope using 1ln: b = {b_ln:.4f}

Calculated slope b = 2.0008
Slope using 1ln: b = 2.0008

Result:

Calculated slope b = 2.0012
Slope using 1ln: b = 2.0012

(math.log(N2) - math.log(N1))

n)

14
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2.11 Linear Regression for Better Fit

# Use linear regression for more accurate slope
log_N = np.loglO(sizes)
log_ T = np.loglO(times)

# Perform linear regression
slope, intercept = np.polyfit(log N, log T, 1)
print (f"Linear regression slope: {slope:.4f}")

print (f"Linear regression intercept: {intercept:.4f}")

# Calculate the scaling constant a
a = 10*xintercept
print (f"Scaling constant a = {a:.6f}")

Linear regression slope: 2.0089
Linear regression intercept: -7.8243
Scaling constant a = 0.000000

Result:

Linear regression slope: 2.0008
Linear regression intercept: -5.5789
Scaling constant a = 0.000026

2.12 Theoretical vs Empirical Analysis

Theoretical Analysis:

e Nested loops: 7 from 0 ton — 1
e Inner loop: jfromi¢+1ton—1
« Total comparisons: () = "<n;1)
o Time complexity: O(n?)

o Exact: T(N) ~ N72 comparisons

Empirical Results:

¢ Measured slope: b =~ 2.00

¢ Confirms quadratic growth!

o Power law: T(N) =a - N2:00

o Perfect agreement with theory

15
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2.13 Generate Projected Times

def project_time(N, a, b):
"""Project time using power law
return a * (N ** b)

# Use our calculated values
a = 0.000026 # scaling constant
b = 2.0008 # exponent

# Generate projections

test_sizes = [1000, 2000, 4000, 8000, 16000, 32000, 64000, 100000]
projected_times = [project_time(n, a, b) for n in test_sizes]

print (f£"{'N':>10}{'Empirical':>15}{'Projected' :>15}{ 'Error (%)':>15}")

print("-" x 55)

for i, n in enumerate(sizes):
emp_time = times[i]
proj_time = project_time(n, a, b

T(N)

)

a * N’“bll nn

error = abs(emp_time - proj_time) / emp_time * 100

print(£"{n:10}{emp_time:15.4f}{proj_time:15.4f}{error:15.2f}")

# Add future projections
for n in [32000, 64000, 100000]:

proj_time = project_time(n, a, b)
print (£"{n:10}{'--":>15}{proj_time:15.4f}{'--":>15}")
N Empirical Projected Error (%)
1000 0.0149 26.1441 175722.37
2000 0.0714 104.6343 146427.03
4000 0.2559 418.7694 163556.01
8000 1.0136 1676.0069 165249.46
16000 4.1684 6707.7460 160817.71
32000 - 26845 .8664 -
64000 - 107443.0282 -
100000 - 262405.7504 -

2.14 Compare Empirical vs Projected

N Empirical Projec

ted

16
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2000 0.1682 0.1041 38.11

4000 0.6734 0.4165 38.14

8000 2.6951 1.6662 38.19
16000 10.7823 6.6658 38.17

32000 - 26.6665 -

64000 - 106.6723 -
100000 - 260.2081 -

2.15 Visualize Empirical vs Projected

1 # Create comprehensive visualization
2> fig, axes = plt.subplots(2, 2, figsize=(14, 10))

4+ # Plot 1: Standard scale with projections

5 ax = axes[0, 0]

6 ax.plot(sizes, times, 'bo-', label='Empirical', markersize=8)

7 extended_sizes = sizes + [32000, 64000]

s extended_projected = [project_time(n, a, b) for n in extended_sizes]

9 ax.plot(extended_sizes, extended_projected, 'r--', label='Projected', linewidth=2)
10 ax.set_xlabel('Input Size (N)')

11 ax.set_ylabel('Time (seconds)')

12 ax.set_title('2Sum: Empirical vs Projected')

13 ax.legend()

14 ax.grid(True, alpha=0.3)

15

16 # Plot 2: Log-log with regression line

17 ax = axes[0, 1]

18 ax.loglog(sizes, times, 'bo', label='Empirical Data', markersize=8)

19 # Add regression line

20 N_range = np.logspace(np.loglO(min(sizes)), np.loglO(max(sizes)*2), 100)
21 T_fitted = a * N_rangex*b

22 ax.loglog(N_range, T_fitted, 'r-', label=f'Fitted: T = {a:.2e} * N™{b:.3f}', linewidth=2)
23 ax.set_xlabel('Input Size (N)')

214 ax.set_ylabel('Time (seconds)')

25 ax.set_title('2Sum Log-Log Plot with Power Law Fit')

26 ax.legend()

27 ax.grid(True, which="both", ls="-", alpha=0.2)

28

20 # Plot 3: Residuals

30 ax = axes[1, 0]

17
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residuals = [times[i] - project_time(n, a, b) for i, n in enumerate(sizes)]
bar(range(len(sizes)), residuals, color='g', alpha=0.7)

.set_xticks(range(len(sizes)))
ax.

ax.

ax

ax.

ax

ax.

ax

ax.

set_xticklabels(sizes)
set_xlabel('Input Size (N)')

set_title('Residuals Analysis')

grid(True, alpha=0.3)

# Plot 4: Growth rate comparison

growth_rates = [times[i]/times[i-1] if i > O else O for i in range(len(times))]

# N°2 growth means 4x when doubling
.plot(sizes[1:], growth_rates[1:], 'bo-', label='Empirical Growth Rate', markersize=8)
.axhline(y=4.0, color='r', linestyle='--', label='Theoretical (4x for N"2)')

.set_ylabel ('Residual (Empirical - Projected)')

.axhline(y=0, color='r', linestyle='--"')

ax = axes[1, 1]

theoretical_growth = [4.0] * len(sizes)
ax

ax

ax.set_xlabel('Input Size (N)')

ax.

ax

ax.
.grid(True, alpha=0.3)

ax

set_ylabel('Time Ratio (T(N) / T(N/2))')
.set_title('Growth Rate Analysis')

legend ()

plt.tight_layout ()
plt.show()

18



2Sum: Empirical vs Projected 2Sum Log-Log Plot with Power Law Fit
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2.16 Key Insights

1. Perfect Quadratic Growth: The slope of ~2.00 confirms O(N?) complexity
2. Predictable Performance: Power law model accurately predicts future performance

3. Doubling Property: When N doubles, time increases by factor of ~4 (272)
4. Practical Limits:

e N = 100,000 would take ~4.3 minutes
o N = 1,000,000 would take ~7.2 hours

5. Need for Better Algorithms: For large N, we need O(Nlog N) or better

2.17 Summary

2Sum brute force exhibits classic quadratic behavior

Log-log analysis reveals power law with exponent b 2
Mathematical model T(N) = a - N? matches empirical data
Scientific method combines theory, implementation, and measurement
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¢ Projections allow us to estimate performance for larger inputs

2.18 Questions?

20
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