QuickSort Analysis & Al-Generated Code

Evaluation
CS 351 - Data Structures and Algorithms

Lucas P. Cordova, Ph.D.

This lecture explores the core of the QuickSort algorithm, focusing on the
critical role of partitioning schemes; specifically, the Lomuto and Hoare methods.
We compare their design, efficiency, and practical trade-offs, highlighting how
partitioning choice impacts performance and implementation complexity. The
session also introduces a structured approach to evaluating Al-generated code,
emphasizing the importance of critical analysis, prompt engineering, and thorough
testing. By the end, you’ll understand how to select and analyze partitioning
strategies, and how to apply best practices when leveraging Al tools for algorithm
development.

Table of contents

1 Part 1: QuickSort Partitioning Algorithms

2 Part 2: Evaluating Al-Generated Algorithms

0.1 Outline

Part 1: QuickSort Deep Dive

¢ Partitioning algorithms comparison
o Hands-on algorithm exploration
e Observation and reflection

Part 2: Evaluating AI-Generated Algorithms

¢ Critical analysis of Al code
e Prompt engineering for algorithms
o Interactive evaluation exercise

1 Part 1: QuickSort Partitioning Algorithms

Understanding the heart of QuickSort: partitioning

Unsorted Array

y

Choose Pivot

Partition

Elements < pivot

Elements > pivot

Recursively sort left

Recursively sort right

1.1 The Two Champions: Lomuto vs Hoare

Question for Discussion:
What makes a good partitio
Think about:

ning algorithm?

o Simplicity of implementation

e Number of swaps
e Cache performance

10

11

10

11

12

o FEdge case handling

1.2 Lomuto Partitioning Scheme

Invented by: Nico Lomuto (1990s)
Key Idea: Single pointer scanning from left to right

def lomuto_partition(arr, low, high):
pivot = arrl[high] # Choose last element as pivot
i=1low -1 # Index of smaller element

for j in range(low, high):
if arr[j] <= pivot:
i+=1
arr[i], arr[j] = arr([j], arr[i]

arr[i + 1], arrlhigh] = arr[high], arr[i + 1]
return i + 1

Characteristics:

o Fasy to understand and implement
e Always places pivot in final position
e Performs more swaps on average

1.3 Hoare Partitioning Scheme

Invented by: Tony Hoare (1961) - Original QuickSort creator
Key Idea: Two pointers moving toward each other

def hoare_partition(arr, low, high):

pivot = arr[low] # Choose first (or last) element as pivot
low - 1
high + 1

i

]

while True:

i+=1

while arr[i] < pivot:
i+=1

j-=1

while arr[j] > pivot:

13

14

15

16

17

18

if i o>= §:
return j
arr[i], arr([j] = arr[j], arrl[il
Characteristics:

o Fewer swaps on average
¢ Pivot not necessarily in final position
e More complex logic

1.4 Comparison Table

Aspect Lomuto Hoare
Simplicity High Medium
Swaps (average) More Fewer

Pivot placement Exact final position Approximate
Cache performance Good Better

Edge cases Fasier to handle More complex

1.5 Exploration Time!

Activity 1: Algorithm Visualization
Visit: https://courses.lpcordova.com/cs351/algoviz/quicksort.html

Your Mission:
1. Test QuickSort with Hoare partitioning
Try these scenarios:

o Randomly generated data (default settings)
e Use own data option

— Already sorted array: [1, 2, 3, 4, 5, 6, 7, 8]
— Reverse sorted: [8, 7, 6, 5, 4, 3, 2, 1]

— Random: [3, 7, 1, 9, 4, 6, 8, 2]

— Duplicates: [5, 3, 5, 1, 5, 7, 5]

1.6 Reflection & Observations

Discussion Questions:
Group Discussion: What patterns did you notice?

Specific observations to consider:

e How did performance differ with sorted vs random data?
e Any unexpected behaviors or peculiarities?

1.7 Key Insights from QuickSort Analysis

Performance Characteristics:

Input Type

Good—»

O(n log n)

Pivot Selection Partitioning Quality

Poor—»

O(n?)

Data Distribution

Real-world implications:

e Choice of partitioning affects constant factors and simplicity
o Pivot selection strategy matters more than partitioning scheme
¢ Understanding algorithms deeply helps in optimization

2 Part 2: Evaluating Al-Generated Algorithms

The New Reality: Al can generate algorithm code instantly, but can we trust it?

Objectives:

10

12

13

14

15

16

17

18

19

20

21

22

23

24

e Develop critical evaluation skills
o Learn effective prompt engineering
e Understand Al limitations in algorithmic thinking

2.1 Case Study: Al-Generated Merge Sort

Scenario: You ask an Al to implement Merge Sort
Your prompt: “Write a merge sort algorithm in Python”

Let’s see what we might get and how to evaluate it...

2.2 Al Response Example

def merge_sort(arr):
if len(arr) <= 1:
return arr

mid = len(arr) // 2
left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])

return merge(left, right)

def merge(left, right):
result = []
i=j=0

while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i+=1
else:
result.append(right[j])
j=1

result.extend(left[i:])
result.extend(right[j:])
return result

2.3 Evaluation Framework

The TRACE Method for Algorithm Evaluation:

Time Complexity Analysis
Readability and Structure
Accuracy and Correctness
Corner Cases and Edge Handling
Efficiency and Space Usage

2.4 T - Time Complexity Analysis

Questions to ask:

e What’s the theoretical time complexity?
e Does the implementation match the expected complexity?
e Are there hidden inefficiencies?

For our Merge Sort: - Expected: O(n log n) - Implementation:

structure - Hidden issue: Array slicing creates copies (Python-specific)

2.5 R - Readability and Structure

Code Quality Checklist:

Clear variable names

Logical function decomposition
Appropriate comments
Consistent style

(]

Our example assessment:

e Clear function separation
e Meaningful variable names
e Missing docstrings

e Clean, readable structure

Correct recursive

10

11

12

13

2.6 A - Accuracy and Correctness

Testing Strategy:

def test_merge_sort():
Basic functionality
assert merge_sort([3, 1, 4, 1, 5]) == [1, 1, 3, 4, 5]

Edge cases
assert merge_sort([]) == []
assert merge_sort([1]) == [1]

Duplicates
assert merge_sort([2, 2, 2]) == [2, 2, 2]

Already sorted
assert merge_sort([1, 2, 3, 4]) == [1, 2, 3, 4]

2.7 C - Corner Cases and Edge Handling

Critical scenarios to test:

o Empty arrays

e Single element arrays

e All elements identical

o Already sorted (best case)

o Reverse sorted (worst case for some algorithms)
e Very large datasets

2.8 E - Efficiency and Space Usage

Space Complexity Analysis:

Merge Sort Space

Recursive Call Stack Temporary Arrays

O(log n) O(n)

Total: O(n)

Python-specific considerations:

o List slicing creates copies
e Memory overhead for temporary lists
e Garbage collection impact

2.9 Exercise: Prompt Engineering for Algorithms

Activity 2: Crafting Better Prompts
Basic Prompt: “Write a heap sort algorithm”

Enhanced Prompt: “Write an in-place heap sort algorithm in Python with the following
requirements:

e Include time and space complexity analysis

e Add comprehensive docstrings

o Handle edge cases (empty array, single element)
e Include test cases

¢ Optimize for minimal memory usage

¢ Add comments explaining the heapify process”

Your turn: Work in pairs to improve this prompt for bubble sort

2.10 Prompt Engineering Strategies

The CLEAR Framework:

Context - Provide background and constraints
Length - Specify desired code length/complexity
Examples - Include input/output examples
Analysis - Request complexity analysis
Requirements - List specific technical requirements

2.11 Example: CLEAR Applied

Context: “I'm implementing sorting algorithms for a computer science course”
Length: “Write a concise but well-documented implementation”

Examples: “Should sort [64, 34, 25, 12, 22, 11, 90] to [11, 12, 22, 25, 34, 64, 90]”
Analysis: “Include time and space complexity in comments”

Requirements: “Use Python, include error handling, optimize for readability”

2.12 Red Flags in Al-Generated Code

Watch out for:

¢ Infinite recursion in recursive algorithms

e Off-by-one errors in array indexing

¢ Memory leaks in languages requiring manual management

e Incorrect complexity claims in comments

¢ Missing edge case handling

¢ Non-optimal implementations that work but are inefficient

10

2.13 Interactive Evaluation Exercise

Activity 3: Code Review Challenge

I'll show you an Al-generated selection sort. Use the TRACE method to evaluate it:

def selection_sort(arr):

for i in range(len(arr)):

min_idx = 1

for j in range(i+1l, len(arr)):

if arr[j] < arr[min_idx]:
min_idx = j

arr[i], arr[min_idx] = arr[min_idx], arr[i]

return arr

Work in groups:

¢ Apply TRACE method
o Identify strengths and weaknesses
e Suggest improvements

2.14 Best Practices for Al Algorithm Assistance

DO:

e Use Al for initial implementation ideas

¢ Ask for multiple approaches

¢ Request explanation of design choices

e Verify with your own test cases

o Cross-reference with authoritative sources

DON’T:

e Blindly trust Al output

e Skip manual testing

e Ignore complexity analysis

e Copy without understanding

o Forget to optimize for your specific use case

11

12

2.15 Practical Workflow

Define Problem

Craft Detailed Prompt

Get Al Response

e

N

Apply TRACE Method

No

Refine Prompt

Acceptable?

Yes

!

Test Thoroughly

Optimize if Needed

1.9
BEY)

Document and Deploy

2.16 Summary: Key Takeaways

QuickSort Insights:

o Partitioning choice affects performance constants
o Hoare generally more efficient, Lomuto more intuitive
e Understanding internals helps optimization decisions

AT Algorithm Evaluation:

o Always apply critical analysis (TRACE method)

o Good prompts yield better results (CLEAR framework)
e Al is a tool, not a replacement for understanding

e Testing and verification are non-negotiable

2.17 Next Steps

For your QuickSort assignment:

1. Apply today’s knowledge to analyze your implementation
2. Use TRACE method to evaluate any Al assistance

3. Test thoroughly with various input types

4. Document your analysis of partitioning choice

Questions to ponder:

e How might modern library implementations handle these trade-offs?
o What other factors might affect sorting performance in practice?
e How can profiling tools help validate theoretical analysis?

14

	Part 1: QuickSort Partitioning Algorithms
	Part 2: Evaluating AI-Generated Algorithms

