Al Algorithm Evaluation: Lessons Learned
Pancake Sorting Challenge Follow-Up

Lucas P. Cordova, Ph.D.

This lecture debriefs the pancake sorting challenge and discusses the key insights
about working with AI for algorithmic problem solving.

Table of contents

1 Activity Debrief 1
2 Prompt Evolution 2
3 Key Improvements Between lterations 8
4 Critical Insights 9
5 Broader Implications for Coding 11
6 Takeaways for Future Projects 12

1 Activity Debrief

1.1 Your Experience with Al and Algorithms

What did we discover together?

Let’s reflect on your pancake sorting adventure and extract the key insights about working
with AT for algorithmic problem solving.

1.2 Common Challenges Faced

Based on your submissions, typical struggles included:

e Al generated standard sorting instead of flip operations

e Missing edge case handling for empty arrays

o Incorrect output format (just array vs. full result object)

o Flip operations that violated the “from index 0” constraint
e Overly complex solutions for simple cases

e Incomplete or missing flip sequence tracking

Sound familiar?

1.3 The Good News

What worked well across teams (observations):

e Groups with detailed prompts got significantly better results

e TRACE evaluation helped identify issues systematically

o Testing revealed problems that weren’t obvious from code reading
e Most teams could improve Al output through iteration

e Reflection led to genuine insights about Al capabilities

2 Prompt Evolution

2.1 The Journey

Let’s examine a real example of prompt evolution that demonstrates the power of iterative
improvement.

Our scenario: Getting Al to implement proper pancake sorting

2.2 lteration 1: The Basic Attempt
Student’s first prompt:

Write a pancake sort algorithm in Python.

AT Response:

def pancake_sort(arr):
for i in range(len(arr), 1, -1):
max_idx = arr.index(max(arr[:i]))
if max_idx != i-1:
arr = arr[:max_idx+1][::-1] + arr[max_idx+1:]
arr = arr[:i][::-1] + arr[i:]
return arr

2.3 Problems with Iteration 1

TRACE Analysis revealed multiple issues:

Iteration 1 Code

Missing flip Wrong output No edge case
tracking format handling

Unclear c
log

Test Results:

o Basic functionality: FAILED (wrong return format)
o Duplicates: FAILED (logic errors)

o Edge cases: FAILED (crashes on empty array)

o Flip validation: FAILED (no operation tracking)

2.4 Iteration 2: Adding Context and Requirements

Improved prompt:

I need a pancake sorting algorithm for a robotic pancake flipper.
The robot can only flip pancakes from the top of the stack down to
any position. The function should:

- Take a list of pancake sizes
- Only use flip operations from index O to position k
- Return a dictionary with sorted array, flip sequence, and total flips

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

- Handle edge cases like empty arrays
- Work with duplicate values

Include the flip operation as a helper function.

2.5 Iteration 2 Results

AT Response (excerpt):

def flip(arr, k):
return arr[:k+1][::-1] + arr[k+1:]

def pancake_sort(pancakes) :
if len(pancakes) <= 1:
return {
'sorted_array': pancakes,
'flip_sequence': [],
'total_flips': O

arr = pancakes.copy()
flips = []

for i in range(len(arr), 1, -1):
max_idx = arr.index(max(arr([:i]))
if max_idx !'= 0:
arr = flip(arr, max_idx)
flips.append(max_idx)
if arr[0] != arr[i-1]:
arr = flip(arr, i-1)
flips.append(i-1)

return {
'sorted_array': arr,

'flip_sequence': flips,
'total_flips': len(flips)

2.6 Progress in Iteration 2

Major improvements:

o Proper output format with required keys
¢ Dedicated flip helper function

o Basic edge case handling

o Flip sequence tracking

e Clear algorithm structure

Remaining issues:

o Still fails some duplicate tests

o Missing detailed validation

e No operations log for debugging
e Algorithm could be more efficient

2.7 lteration 3: The Refined Solution

Final optimized prompt:

Create a comprehensive pancake sorting implementation for a robotic
breakfast system with these exact specifications:

CONTEXT: Robot arm can only flip pancakes from position O down to any
position k. This reverses elements from index O to k inclusive.

REQUIREMENTS:
- Function signature: pancake_sort(pancakes, options=None)
- Input: list of comparable elements (integers representing sizes)

- Output: dictionary with keys: 'sorted_array', 'flip_sequence',
'total_flips', 'is_sorted', 'operations_log'
CONSTRAINTS:

- Only flip operations allowed (no swaps, inserts, etc.)
- All flips must start from index O

- Must preserve all original elements

- Handle duplicates correctly

EDGE CASES:

- Empty array: return empty array, no flips
- Single element: return unchanged, no flips
- Already sorted: minimize flips needed

- A1l identical: handle efficiently

EXAMPLE:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Input: [3, 1, 2]
Process: Find max (3) at 0, flip to end -+ [2, 1, 3]
Find max (2) at 0, flip to position = [1, 2, 3]

Output: {'sorted_array':

[1, 2, 3], 'flip_sequence':

'total_flips': 2, 'is_sorted': True}

(2, 11,

Include comprehensive error checking and detailed comments
explaining the pancake sorting strategy.

2.8 lteration 3 Results

AT delivered a robust solution:

def pancake_sort(pancakes, options=None):

Pancake sorting algorithm - sorts by flipping from index O only.

Args:

pancakes: List of comparable elements

options: Optional dict for algorithm parameters

Returns:

Dict with sorted_array, flip_sequence, total_flips,

is_sorted, operations_log

Input validation

if not isinstance(pancakes, list):
raise TypeError("Input must be a list")

if len(pancakes) <= 1:
return {
'sorted_array': pancakes.copy(Q),
'flip_sequence': [],
'total_flips': O,
'is_sorted': True,
'operations_log': []

arr = pancakes.copy()

}
flips = []
operations

(]

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

def flip(array, k):
"""Flip elements from index O to k inclusive"""
return array[:k+1][::-1] + array[k+1:]

Main pancake sorting algorithm
n = len(arr)
for size in range(n, 1, -1):

Find position of largest unsorted element

max_idx = 0

for i in range(size):

if arr[i] > arr[max_idx]:
max_idx = i

If largest element is not at front, flip it to fromnt
if max_idx != O:

arr = flip(arr, max_idx)

flips.append (max_idx)

operations.append((max_idx, arr.copy()))

If largest element is not at correct position, flip to position
if max_idx != size - 1 or arr[0] > arr[size - 1]:

arr = flip(arr, size - 1)

flips.append(size - 1)

operations.append((size - 1, arr.copy()))

return {
'sorted_array': arr,
'flip_sequence': flips,
'total_flips': len(flips),
'is_sorted': all(arr[i] <= arr[i+1] for i in range(len(arr)-1)),
'operations_log': operations

2.9 Test Results: Iteration 3

Comprehensive success:

¢ Basic functionality: PASSED
¢ Duplicates: PASSED

¢ Reverse sorted: PASSED

« Edge cases: PASSED

« Flip validation: PASSED

¢ Identical elements: PASSED
Performance: Efficient O(n?) implementation with proper flip tracking
3 Key Improvements Between lterations

3.1 Iteration 1 — 2: Adding Context

What changed:

Vague Request

Specific Context No Requirements No Examples

Clear Requirements Usage Examples

Impact:

o AT understood the domain (robotic pancake flipper)
Generated appropriate constraints (flip from index 0)
¢ Included required output format

e Added basic edge case handling

3.2 Iteration 2 — 3: Comprehensive Specification

Major enhancements:

¢ Detailed examples with step-by-step walkthrough
o Explicit edge cases with expected behaviors

o Precise input/output specifications

¢ Algorithm explanation requirements

¢ Error handling requirements

¢ Performance considerations

The difference: Moving from “what” to “exactly how and why”

3.3 The Transformation Pattern

Common progression we observed:

1. Basic request — Generic, often wrong solution
2. Context added — Domain-appropriate but incomplete
3. Specifications detailed — Robust, testable solution

Key insight: Specificity and context are multiplicative, not additive
4 Critical Insights

4.1 TRACE Method Effectiveness

What your submissions are revealing:

Found O(n? O(nl
Time Analysis ound O(n*) VS, (nlog n)
confusion
Identified missin
Readability) 8
documentation
Caught algorithmic errors
Accuracy g 8
early
Corner Cases Revealed edge case failures
Efficiency Spotted memory waste

The TRACE method caught issues that manual inspection missed

4.2 Evident Al Strengths

Where AI excelled:

e Pattern recognition in algorithmic structures

e Code generation speed for well-specified problems
¢ Syntax correctness and basic error handling

¢ Documentation when specifically requested

e Multiple approaches when asked for alternatives

10

4.3 Evident Al Limitations

Consistent weak points:

e Algorithm selection without clear guidance
« Edge case imagination - needs explicit examples

¢ Optimization decisions without performance requirements
o Testing strategy - rarely suggests comprehensive tests

¢ Domain knowledge assumptions can be wrong

4.4 The Prompt Engineering Takeaways

What separates effective from ineffective prompts:

e Specific examples with expected outputs

e Constraint explanation with reasoning
¢ Edge case enumeration with handling requirements
¢ Qutput format specification with all required fields

e Algorithm strategy hints when appropriate

It’s not just being detailed - it’s being strategically detailed

5 Broader Implications for Coding

5.1 The New Coding Workflow

Traditional approach:

Problem

AlI-Assisted approach:

Problem

Design

Code

Test

A

Prompt Design

Al Generation

Debug

Key difference: Prompt design becomes as important as algorithm design

11

Evaluation

5.2 Skills That Matter More Now

Rising in importance:

e Specification writing - precise requirement articulation
¢ Evaluation frameworks - systematic quality assessment
o Testing strategy - comprehensive validation approaches
e Prompt engineering - effective Al communication

e Critical analysis - distinguishing good from adequate code

Still essential but changing:

¢ Algorithm knowledge - for evaluation and debugging
e Code reading - for Al output assessment
e System design - for integration planning

5.3 Quality Assurance Evolution

New responsibilities:

e Al output validation replaces some manual testing
¢ Prompt version control for reproducible results

o Evaluation criteria definition for consistent quality
AT model selection for different problem types

« Bias detection in Al-generated solutions

6 Takeaways for Future Projects

6.1 The Prompt Engineering Playbook

For algorithmic problems, always include:

Domain context - what real problem this solves
Operation constraints - what’s allowed and forbidden
Input/output examples - concrete illustrations
Edge cases - boundary conditions and expected handling

Output format - exact structure required
Validation requirements - how success is measured

O QU N

12

Performance expectations - time/space complexity needs

6.2 The Evaluation Checklist

Before trusting any Al-generated algorithm:

Apply systematic evaluation (TRACE or similar)
Run comprehensive test suite including edge cases
Verify algorithmic complexity claims

Check for constraint violations

Validate output format completeness

Assess code maintainability and documentation

6.3 When to Use Al for Algorithms

Good candidates:

Well-understood problem domains
Standard algorithmic patterns with twists
Implementation of known algorithms
Code translation between languages
Performance optimization of existing code

Proceed with caution:

Novel algorithmic research
Critical performance requirements
Complex constraint satisfaction
Domain-specific optimization
Security-sensitive implementations

6.4 Building on the Relationship with Generative Al

Practice these techniques:

Iterative refinement - start broad, narrow systematically
Specification decomposition - break complex requirements down
Example-driven explanation - show don’t just tell

Constraint articulation - be explicit about limitations

Quality measurement - define success criteria upfront

13

	Activity Debrief
	Prompt Evolution
	Key Improvements Between Iterations
	Critical Insights
	Broader Implications for Coding
	Takeaways for Future Projects

