Pathfinding Algorithms

CS 351: Analysis of Algorithms

This lecture reviews the three pathfinding algorithms we’ll use in Project 2:

Lucas P. Cordova, Ph.D.

Greedy Best-First Search, Dijkstra’s Algorithm, and A*.
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1.1 What Are Pathfinding Algorithms?
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Pathfinding algorithms find the optimal or near-optimal route between two points in a graph.

Applications:

e GPS navigation and route planning

¢ Video game Al and character movement
¢ Network routing protocols

¢ Robotics path planning



o Logistics and delivery optimization

1.2 Why Multiple Algorithms?

Different algorithms make different trade-offs:

¢ Speed vs. Optimality - Fast approximation vs. guaranteed shortest path
¢ Memory usage - How much information needs to be stored
¢ Use of heuristics - Leveraging domain knowledge for efficiency

Today we’ll review the three fundamental approaches to pathfinding on the same problem.

2 The Problem Setup

2.1 Our Example Graph

We'll use a simple graph with 6 nodes to illustrate each algorithm:



Goal: Find a path from S (start) to G (goal)

2.2 Graph Components

Nodes:

e S (Start) - our starting point
« A B, C, D - intermediate nodes
o G (Goal) - our destination

Edge Costs:

¢ The numbers on edges represent the actual cost to traverse the edge
Heuristic Values h(n):

o Estimated distance from each node to goal (shown below node names)
e This is a heuristic, an estimate of the remaining distance to the goal

2.3 Graph Data Table

Edge Cost Node h(n)

S— A
S—B
A—-C
B— C
B—-D
C—->G
D—-G
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Note: The heuristic h(n) represents an estimate of the remaining distance to the goal.

3 Greedy Best-First Search

3.1 Algorithm Overview

Strategy:

o Always expand the node that appears closest to the goal based on the heuristic function
h(n).

Key Characteristics:

o Uses only the heuristic h(n), ignoring actual path cost
e Greedy approach - makes locally optimal choices

Fast but not guaranteed to find the optimal path

e Can be misled by poor heuristics
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3.2 Greedy BFS: The ldea

Think of it like:

o Following the “scent” directly toward the goal, always choosing the path that seems to
lead most directly there.

Analogy:

o Like a person lost in a forest who always walks in the direction that feels closest to home,
without considering how difficult the terrain might be.

3.3 Greedy BFS Pseudocode

function GreedyBestFirstSearch(start, goal):
frontier = PriorityQueue()
frontier.add(start, h(start))
explored = empty set

while frontier is not empty:
current = frontier.pop() # Lowest h(n)

if current == goal:
return path

explored.add(current)
for each neighbor of current:
if neighbor not in explored:

frontier.add(neighbor, h(neighbor))

return failure

3.4 Step 0: Initialize

Starting State:

o Frontier: {S (h=6)}
o Explored: {}
e Current path: None



Current node: S (highlighted in gold)

3.5 Step 1: Expand S

Action:
o Explore neighbors of S
Updates:

o Frontier: {B (h=4), A (h=5)}
o Explored: {S}
e B has lower h-value, so it will be expanded next



3.6 Step 2: Expand B

Action:
o B has the lowest heuristic (h=4)
Updates:

o Frontier: {C (h=2), D (h=3), A (h=5)}
« Explored: {S, B}
¢ C has the lowest h-value



3.7 Step 3: Expand C

Action:
C has the lowest heuristic (h=2)

Updates:
o Frontier: {G (h=0), D (h=3), A (h=5)}

o Explored: {S, B, C}
e G is now in frontier!



3.8 Step 4: Reach Goal

Result:

o G has h=0 (lowest possible), expand it and find the goal!
Path Found:

e S=-B—=-C—=G
Path Cost:

e 14+2+2=5



3.9 Greedy BFS Results

Summary:

¢« Path: S—- B—->C—> G

e Cost: 5

e Nodes Explored: 4 (S, B, C, G)
e Optimal? We'll see...

Observation:

e The algorithm followed the heuristic values greedily, always choosing the node that seemed
closest to the goal.
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4 Dijkstra’s Algorithm

4.1 Algorithm Overview

Strategy:

o Expand nodes in order of their actual distance g(n) from the start, guaranteeing the
shortest path.

Key Characteristics:

o Uses actual path cost g(n), ignoring heuristics
e Guarantees optimal solution
e More thorough exploration than Greedy BFS
e Uniform cost search variant

4.2 Dijkstra’s Algorithm: The Idea

Think of it like:
o Exploring all paths systematically by distance, like ripples expanding in water.
Analogy:

e Like carefully measuring every possible route with a measuring tape, always extending
the shortest path found so far.

4.3 Dijkstra Pseudocode

function Dijkstra(start, goal):
frontier = PriorityQueue()
frontier.add(start, 0)
g_scores = {start: 0}
explored = empty set

while frontier is not empty:
current = frontier.pop() # Lowest g(n)

if current == goal:
return path

explored.add(current)
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for each neighbor of current with cost:
tentative_g = glcurrent] + cost
if neighbor not in explored or

tentative_g < glneighbor]:
glneighbor] = tentative_g

frontier.add(neighbor,

return failure

4.4 Step 0: Initialize

Starting State:

o Frontier: {S (g=0)}
o g-scores: {S: 0}
o Explored: {}

All nodes start with g=oo except start

tentative_g)

12



4.5 Step 1: Expand S

Action:
e Explore S and update neighbors
g-score Updates:

« gA)=0+4+2=2
e gB)=0+1=1

New State:

o Frontier: {B (g=1), A (g=2)}
o Explored: {S}
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4.6 Step 2: Expand B

Action:
o B has lowest g-score (g=1)
g-score Updates:

e g(C)=1+4+2=3
e gD)=1+4=5

New State:

o Frontier: {A (g=2), C (g=3), D (g=5)}
o Explored: {S, B}

4.7 Step 3: Expand A

Action:

o A has lowest g-score (g=2)
g-score Updates:

e g(C) =2+ 3 =5 (no update, 3 is better)
New State:

o Frontier: {C (g=3), D (g=5)}
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» Explored: {S, B, A}

(]

4.8 Step 4: Expand C

Action:

e C has lowest g-score (g=3)
g-score Updates:

e g(G)=3+2=5
New State:

o Frontier: {D (g=5), G (g=5)}
« Explored: {S, B, A, C}
e Tie between D and G!
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4.9 Step 5: Expand D (or G)

Action:

o Break tie arbitrarily - let’s expand D first
g-score Updates:

e g(G) =5+ 1 =6 (no update, 5 is better!)
New State:

o Frontier: {G (g=5)}
o Explored: {S, B, A, C, D}
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4.10 Step 6: Reach Goal

Result:

e G is expanded - goal reached!
Path Found:

e S=-B—=-C—=G

Path Cost:
1+24+2=5
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4.11 Dijkstra Results

Summary:

e« Path: S- B —-C—> G

e Cost: 5

o Nodes Explored: 6 (S, B, A, C, D, G)
e Optimal? YES - guaranteed!

Observation:

¢ Dijkstra explored more nodes than Greedy BFS but found the same path. The key
difference: Dijkstra guarantees this is optimal.

4.12 Why Is This Path Optimal?

Alternative Path Analysis:
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e S>A->C—->G=2+3+2=7 (worse)
e S»>B—-D—-G=1+4+1=6 (worse)
e SB—-C—->G=1+2+2=25 (best!)

Dijkstra checked all possibilities systematically and confirmed 5 is the minimum
cost.

5 A* Search Algorithm

5.1 Algorithm Overview

Strategy:
o Combine actual cost g(n) and heuristic h(n) using evaluation function f(n) = g(n) + h(n)
Key Characteristics:

o Uses both actual cost and heuristic information

o Optimal when heuristic is admissible (never overestimates)
e More efficient than Dijkstra with good heuristics

e Best of both worlds

5.2 A* Search: The ldea

Think of it like:

e A smart explorer who considers both how far they’ve traveled AND how far they estimate
they still need to go.

Analogy:

o Like planning a road trip where you consider both the miles already driven and your
GPS estimate of remaining distance.
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5.3 A* Pseudocode

function AStar(start, goal):
frontier = PriorityQueue()
frontier.add(start, h(start))
g_scores = {start: 0}
explored = empty set

while frontier is not empty:
current = frontier.pop() # Lowest f(n)

if current == goal:
return path

explored.add(current)

for each neighbor of current with cost:
tentative_g = glcurrent] + cost
if neighbor not in explored or
tentative_g < glneighbor]:
glneighbor] = tentative_g

f [neighbor] = glneighbor] + h[neighbor]
frontier.add(neighbor, f[neighbor])

return failure

5.4 The f(n) Function

Evaluation Function:
e f(n) = g(n) + h(n)
Components:

o g(n) = actual cost from start to node n
e h(n) = estimated cost from node n to goal
o f(n) = estimated total cost of path through n

Intuition:

¢« We want to explore paths that have both low actual cost so far AND promise to reach

the goal efficiently.
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5.5 Step 0: Initialize

Starting State:

o Frontier: {S (f=0+6=6)}
o g-scores: {S: 0}
o Explored: {}

5.6 Step 1: Expand S

Action:
o Calculate f-scores for neighbors
f-score Updates:

e A: g=2 h=5, =7
e B:g=1, h=4, =5

New State:
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o Frontier: {B (f=5), A (f=7)}
o Explored: {S}

5.7 Step 2: Expand B

Action:
o B has lowest f-score (f=5)

f-score Updates:

New State:

o Frontier: {C (f=5), A (f=7), D (=8)}
o Explored: {S, B}
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5.8 Step 3: Expand C

Action:

o C has lowest f-score (f=5)
f-score Updates:

o G:g=5,h=0, {=5
New State:

o Frontier: {G (f=5), A (f=7), D (f=8)}
o Explored: {S, B, C}

23



5.9 Step 4: Reach Goal

Result:

o G has lowest f-score (f=5) - goal reached!
Path Found:

e S=-B—=-C—=G
Path Cost:

e 14+2+2=5
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5.10 A* Results

Summary:

Path: S - B - C = G

Cost: 5

Nodes Explored: 4 (S, B, C, G)
Optimal? YES (with admissible heuristic)

Observation:

o A* explored the same number of nodes as Greedy BFS (4) but with the optimality
guarantee of Dijkstral

5.11 Why A* Was Efficient

The Power of f(n):
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e A* avoided exploring A and D because their f-scores indicated they wouldn’t lead to

better solutions.
Comparison:

o Node A: f=7 (higher than solution)
o Node D: f=8 (higher than solution)
e Solution path: all nodes had f5

This is why A* is often the best choice when a good heuristic is available.

6 Algorithm Comparison

6.1 Side-by-Side Results

Algorithm Path Cost Nodes Explored Optimal?
Greedy BFS S—B—C—G 5 4 Yes*
Dijkstra S—»B—-C—G 5 6 Yes

A* S—»B—-C—G 5 4 Yes

*Greedy BFS happened to find the optimal path but doesn’t guarantee it

6.2 Exploration Pattern Comparison

Dijkstra (g only)

A (f=g+h) 7
B g=1 ———» Cg=3
S f=6 ‘ ] B f=5 Cf5 }—»{ G =5 ‘ /
| ‘ Sg=0 \>
~_]

Ag=2

6.3 Performance Metrics

Time Complexity:

o All three: O((V + E) log V) with priority queue
o In practice, efficiency varies with heuristic quality
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Space Complexity:

o All three: O(V) for storing nodes
e A* may need more memory for f-scores

Optimality:

¢ Greedy BFS: No guarantee
¢ Dijkstra: Always optimal
o A*: Optimal with admissible heuristic

6.4 When to Use Each Algorithm

Greedy Best-First Search:

e When speed is critical and approximate solutions are acceptable
e When you have a very accurate heuristic
e Video games, real-time systems

Dijkstra’s Algorithm:

e When optimality is required and no heuristic is available
e When all edges have different costs
e Network routing, GPS without traffic data

A* Search:

e« When optimality is required and good heuristics exist
e Most pathfinding applications
o GPS with traffic data, game Al, robotics

6.5 Heuristic Quality Matters

Admissible Heuristics:
o Never overestimate the actual cost (h(n) actual cost)
Good Heuristics:

o Lead A* to explore fewer nodes
e Make A* more efficient than Dijkstra
o Examples: Euclidean distance, Manhattan distance

Poor Heuristics:
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o If h(n) = 0 for all nodes, A* becomes Dijkstra
o If h(n) overestimates, A* may not be optimal
o Balance accuracy and computation time

7 Key Takeaways

7.1 Core Concepts

Three Different Strategies:

1. Greedy - Follow what looks best locally (fast, risky)
2. Systematic - Check everything methodically (slow, guaranteed)
3. Informed - Use knowledge to guide systematic search (efficient, guaranteed)

The Trade-off Triangle:

e Speed Optimality Information Requirements

7.2 Practical Applications

Real-World Impact:

o Google Maps uses A*-like algorithms

¢ Video games use optimized variants for NPC pathfinding
¢ Robots use these for navigation

¢ Network protocols use Dijkstra variants

Choosing the Right Algorithm:

e Consider your constraints and requirements before selecting an approach.
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