
Pathfinding Algorithms
CS 351: Analysis of Algorithms

Lucas P. Cordova, Ph.D.

This lecture reviews the three pathfinding algorithms we’ll use in Project 2:
Greedy Best-First Search, Dijkstra’s Algorithm, and A*.

Table of contents

1 Introduction 1

2 The Problem Setup 2

3 Greedy Best-First Search 4

4 Dijkstra’s Algorithm 11

5 A* Search Algorithm 19

6 Algorithm Comparison 26

7 Key Takeaways 28

1 Introduction

1.1 What Are Pathfinding Algorithms?

Pathfinding algorithms find the optimal or near-optimal route between two points in a graph.

Applications:

• GPS navigation and route planning
• Video game AI and character movement
• Network routing protocols
• Robotics path planning

1



• Logistics and delivery optimization

1.2 Why Multiple Algorithms?

Different algorithms make different trade-offs:

• Speed vs. Optimality - Fast approximation vs. guaranteed shortest path
• Memory usage - How much information needs to be stored
• Use of heuristics - Leveraging domain knowledge for efficiency

Today we’ll review the three fundamental approaches to pathfinding on the same problem.

2 The Problem Setup

2.1 Our Example Graph

We’ll use a simple graph with 6 nodes to illustrate each algorithm:

2



Goal: Find a path from S (start) to G (goal)

2.2 Graph Components

Nodes:

• S (Start) - our starting point
• A, B, C, D - intermediate nodes
• G (Goal) - our destination

Edge Costs:

• The numbers on edges represent the actual cost to traverse the edge

Heuristic Values h(n):

• Estimated distance from each node to goal (shown below node names)
• This is a heuristic, an estimate of the remaining distance to the goal

2.3 Graph Data Table

Edge Cost Node h(n)

S → A 2 S 6
S → B 1 A 5
A → C 3 B 4
B → C 2 C 2
B → D 4 D 3
C → G 2 G 0
D → G 1

3



Note: The heuristic h(n) represents an estimate of the remaining distance to the goal.

3 Greedy Best-First Search

3.1 Algorithm Overview

Strategy:

• Always expand the node that appears closest to the goal based on the heuristic function
h(n).

Key Characteristics:

• Uses only the heuristic h(n), ignoring actual path cost
• Greedy approach - makes locally optimal choices
• Fast but not guaranteed to find the optimal path
• Can be misled by poor heuristics

4



3.2 Greedy BFS: The Idea

Think of it like:

• Following the “scent” directly toward the goal, always choosing the path that seems to
lead most directly there.

Analogy:

• Like a person lost in a forest who always walks in the direction that feels closest to home,
without considering how difficult the terrain might be.

3.3 Greedy BFS Pseudocode

1 function GreedyBestFirstSearch(start, goal):
2 frontier = PriorityQueue()
3 frontier.add(start, h(start))
4 explored = empty set
5

6 while frontier is not empty:
7 current = frontier.pop() # Lowest h(n)
8

9 if current == goal:
10 return path
11

12 explored.add(current)
13

14 for each neighbor of current:
15 if neighbor not in explored:
16 frontier.add(neighbor, h(neighbor))
17

18 return failure

3.4 Step 0: Initialize

Starting State:

• Frontier: {S (h=6)}
• Explored: {}
• Current path: None

5



Current node: S (highlighted in gold)

3.5 Step 1: Expand S

Action:

• Explore neighbors of S

Updates:

• Frontier: {B (h=4), A (h=5)}
• Explored: {S}
• B has lower h-value, so it will be expanded next

6



3.6 Step 2: Expand B

Action:

• B has the lowest heuristic (h=4)

Updates:

• Frontier: {C (h=2), D (h=3), A (h=5)}
• Explored: {S, B}
• C has the lowest h-value

7



3.7 Step 3: Expand C

Action:

C has the lowest heuristic (h=2)

Updates:

• Frontier: {G (h=0), D (h=3), A (h=5)}
• Explored: {S, B, C}
• G is now in frontier!

8



3.8 Step 4: Reach Goal

Result:

• G has h=0 (lowest possible), expand it and find the goal!

Path Found:

• S → B → C → G

Path Cost:

• 1 + 2 + 2 = 5

9



3.9 Greedy BFS Results

Summary:

• Path: S → B → C → G
• Cost: 5
• Nodes Explored: 4 (S, B, C, G)
• Optimal? We’ll see…

Observation:

• The algorithm followed the heuristic values greedily, always choosing the node that seemed
closest to the goal.

10



4 Dijkstra’s Algorithm

4.1 Algorithm Overview

Strategy:

• Expand nodes in order of their actual distance g(n) from the start, guaranteeing the
shortest path.

Key Characteristics:

• Uses actual path cost g(n), ignoring heuristics
• Guarantees optimal solution
• More thorough exploration than Greedy BFS
• Uniform cost search variant

4.2 Dijkstra’s Algorithm: The Idea

Think of it like:

• Exploring all paths systematically by distance, like ripples expanding in water.

Analogy:

• Like carefully measuring every possible route with a measuring tape, always extending
the shortest path found so far.

4.3 Dijkstra Pseudocode

1 function Dijkstra(start, goal):
2 frontier = PriorityQueue()
3 frontier.add(start, 0)
4 g_scores = {start: 0}
5 explored = empty set
6

7 while frontier is not empty:
8 current = frontier.pop() # Lowest g(n)
9

10 if current == goal:
11 return path
12

13 explored.add(current)
14

11



15 for each neighbor of current with cost:
16 tentative_g = g[current] + cost
17 if neighbor not in explored or
18 tentative_g < g[neighbor]:
19 g[neighbor] = tentative_g
20 frontier.add(neighbor, tentative_g)
21

22 return failure

4.4 Step 0: Initialize

Starting State:

• Frontier: {S (g=0)}
• g-scores: {S: 0}
• Explored: {}

All nodes start with g=∞ except start

12



4.5 Step 1: Expand S

Action:

• Explore S and update neighbors

g-score Updates:

• g(A) = 0 + 2 = 2
• g(B) = 0 + 1 = 1

New State:

• Frontier: {B (g=1), A (g=2)}
• Explored: {S}

13



4.6 Step 2: Expand B

Action:

• B has lowest g-score (g=1)

g-score Updates:

• g(C) = 1 + 2 = 3
• g(D) = 1 + 4 = 5

New State:

• Frontier: {A (g=2), C (g=3), D (g=5)}
• Explored: {S, B}

4.7 Step 3: Expand A

Action:

• A has lowest g-score (g=2)

g-score Updates:

• g(C) = 2 + 3 = 5 (no update, 3 is better)

New State:

• Frontier: {C (g=3), D (g=5)}

14



• Explored: {S, B, A}

4.8 Step 4: Expand C

Action:

• C has lowest g-score (g=3)

g-score Updates:

• g(G) = 3 + 2 = 5

New State:

• Frontier: {D (g=5), G (g=5)}
• Explored: {S, B, A, C}
• Tie between D and G!

15



4.9 Step 5: Expand D (or G)

Action:

• Break tie arbitrarily - let’s expand D first

g-score Updates:

• g(G) = 5 + 1 = 6 (no update, 5 is better!)

New State:

• Frontier: {G (g=5)}
• Explored: {S, B, A, C, D}

16



4.10 Step 6: Reach Goal

Result:

• G is expanded - goal reached!

Path Found:

• S → B → C → G

Path Cost:

1 + 2 + 2 = 5

17



4.11 Dijkstra Results

Summary:

• Path: S → B → C → G
• Cost: 5
• Nodes Explored: 6 (S, B, A, C, D, G)
• Optimal? YES - guaranteed!

Observation:

• Dijkstra explored more nodes than Greedy BFS but found the same path. The key
difference: Dijkstra guarantees this is optimal.

4.12 Why Is This Path Optimal?

Alternative Path Analysis:

18



• S → A → C → G = 2 + 3 + 2 = 7 (worse)

• S → B → D → G = 1 + 4 + 1 = 6 (worse)

• S → B → C → G = 1 + 2 + 2 = 5 (best!)

Dijkstra checked all possibilities systematically and confirmed 5 is the minimum
cost.

5 A* Search Algorithm

5.1 Algorithm Overview

Strategy:

• Combine actual cost g(n) and heuristic h(n) using evaluation function f(n) = g(n) + h(n)

Key Characteristics:

• Uses both actual cost and heuristic information
• Optimal when heuristic is admissible (never overestimates)
• More efficient than Dijkstra with good heuristics
• Best of both worlds

5.2 A* Search: The Idea

Think of it like:

• A smart explorer who considers both how far they’ve traveled AND how far they estimate
they still need to go.

Analogy:

• Like planning a road trip where you consider both the miles already driven and your
GPS estimate of remaining distance.

19



5.3 A* Pseudocode

1 function AStar(start, goal):
2 frontier = PriorityQueue()
3 frontier.add(start, h(start))
4 g_scores = {start: 0}
5 explored = empty set
6

7 while frontier is not empty:
8 current = frontier.pop() # Lowest f(n)
9

10 if current == goal:
11 return path
12

13 explored.add(current)
14

15 for each neighbor of current with cost:
16 tentative_g = g[current] + cost
17 if neighbor not in explored or
18 tentative_g < g[neighbor]:
19 g[neighbor] = tentative_g
20 f[neighbor] = g[neighbor] + h[neighbor]
21 frontier.add(neighbor, f[neighbor])
22

23 return failure

5.4 The f(n) Function

Evaluation Function:

• f(n) = g(n) + h(n)

Components:

• g(n) = actual cost from start to node n
• h(n) = estimated cost from node n to goal
• f(n) = estimated total cost of path through n

Intuition:

• We want to explore paths that have both low actual cost so far AND promise to reach
the goal efficiently.

20



5.5 Step 0: Initialize

Starting State:

• Frontier: {S (f=0+6=6)}
• g-scores: {S: 0}
• Explored: {}

5.6 Step 1: Expand S

Action:

• Calculate f-scores for neighbors

f-score Updates:

• A: g=2, h=5, f=7
• B: g=1, h=4, f=5

New State:

21



• Frontier: {B (f=5), A (f=7)}
• Explored: {S}

5.7 Step 2: Expand B

Action:

• B has lowest f-score (f=5)

f-score Updates:

• C: g=3, h=2, f=5
• D: g=5, h=3, f=8

New State:

• Frontier: {C (f=5), A (f=7), D (f=8)}
• Explored: {S, B}

22



5.8 Step 3: Expand C

Action:

• C has lowest f-score (f=5)

f-score Updates:

• G: g=5, h=0, f=5

New State:

• Frontier: {G (f=5), A (f=7), D (f=8)}
• Explored: {S, B, C}

23



5.9 Step 4: Reach Goal

Result:

• G has lowest f-score (f=5) - goal reached!

Path Found:

• S → B → C → G

Path Cost:

• 1 + 2 + 2 = 5

24



5.10 A* Results

Summary:

• Path: S → B → C → G
• Cost: 5
• Nodes Explored: 4 (S, B, C, G)
• Optimal? YES (with admissible heuristic)

Observation:

• A* explored the same number of nodes as Greedy BFS (4) but with the optimality
guarantee of Dijkstra!

5.11 Why A* Was Efficient

The Power of f(n):

25



• A* avoided exploring A and D because their f-scores indicated they wouldn’t lead to
better solutions.

Comparison:

• Node A: f=7 (higher than solution)
• Node D: f=8 (higher than solution)
• Solution path: all nodes had f�5

This is why A* is often the best choice when a good heuristic is available.

6 Algorithm Comparison

6.1 Side-by-Side Results

Algorithm Path Cost Nodes Explored Optimal?

Greedy BFS S→B→C→G 5 4 Yes*
Dijkstra S→B→C→G 5 6 Yes
A* S→B→C→G 5 4 Yes

*Greedy BFS happened to find the optimal path but doesn’t guarantee it

6.2 Exploration Pattern Comparison

6.3 Performance Metrics

Time Complexity:

• All three: O((V + E) log V) with priority queue
• In practice, efficiency varies with heuristic quality

26



Space Complexity:

• All three: O(V) for storing nodes
• A* may need more memory for f-scores

Optimality:

• Greedy BFS: No guarantee
• Dijkstra: Always optimal
• A*: Optimal with admissible heuristic

6.4 When to Use Each Algorithm

Greedy Best-First Search:

• When speed is critical and approximate solutions are acceptable
• When you have a very accurate heuristic
• Video games, real-time systems

Dijkstra’s Algorithm:

• When optimality is required and no heuristic is available
• When all edges have different costs
• Network routing, GPS without traffic data

A* Search:

• When optimality is required and good heuristics exist
• Most pathfinding applications
• GPS with traffic data, game AI, robotics

6.5 Heuristic Quality Matters

Admissible Heuristics:

• Never overestimate the actual cost (h(n) � actual cost)

Good Heuristics:

• Lead A* to explore fewer nodes
• Make A* more efficient than Dijkstra
• Examples: Euclidean distance, Manhattan distance

Poor Heuristics:

27



• If h(n) = 0 for all nodes, A* becomes Dijkstra
• If h(n) overestimates, A* may not be optimal
• Balance accuracy and computation time

7 Key Takeaways

7.1 Core Concepts

Three Different Strategies:

1. Greedy - Follow what looks best locally (fast, risky)
2. Systematic - Check everything methodically (slow, guaranteed)
3. Informed - Use knowledge to guide systematic search (efficient, guaranteed)

The Trade-off Triangle:

• Speed � Optimality � Information Requirements

7.2 Practical Applications

Real-World Impact:

• Google Maps uses A*-like algorithms
• Video games use optimized variants for NPC pathfinding
• Robots use these for navigation
• Network protocols use Dijkstra variants

Choosing the Right Algorithm:

• Consider your constraints and requirements before selecting an approach.

28


	Introduction
	The Problem Setup
	Greedy Best-First Search
	Dijkstra's Algorithm
	A* Search Algorithm
	Algorithm Comparison
	Key Takeaways

