Pathfinding Algorithms

CS 351: Analysis of Algorithms

This lecture reviews the three pathfinding algorithms we’ll use in Project 2:

Lucas P. Cordova, Ph.D.

Greedy Best-First Search, Dijkstra’s Algorithm, and A*.

Table of contents

1

Introduction

The Problem Setup
Greedy Best-First Search
Dijkstra’s Algorithm

A* Search Algorithm
Algorithm Comparison

Key Takeaways

Introduction

1.1 What Are Pathfinding Algorithms?

11

19

26

28

Pathfinding algorithms find the optimal or near-optimal route between two points in a graph.

Applications:

e GPS navigation and route planning

¢ Video game Al and character movement
¢ Network routing protocols

¢ Robotics path planning



o Logistics and delivery optimization

1.2 Why Multiple Algorithms?

Different algorithms make different trade-offs:

¢ Speed vs. Optimality - Fast approximation vs. guaranteed shortest path
¢ Memory usage - How much information needs to be stored
¢ Use of heuristics - Leveraging domain knowledge for efficiency

Today we’ll review the three fundamental approaches to pathfinding on the same problem.

2 The Problem Setup

2.1 Our Example Graph

We'll use a simple graph with 6 nodes to illustrate each algorithm:



Goal: Find a path from S (start) to G (goal)

2.2 Graph Components

Nodes:

e S (Start) - our starting point
« A B, C, D - intermediate nodes
o G (Goal) - our destination

Edge Costs:

¢ The numbers on edges represent the actual cost to traverse the edge
Heuristic Values h(n):

o Estimated distance from each node to goal (shown below node names)
e This is a heuristic, an estimate of the remaining distance to the goal

2.3 Graph Data Table

Edge Cost Node h(n)

S— A
S—B
A—-C
B— C
B—-D
C—->G
D—-G

N I CIIURE R O
QO QW W®m
= JRICH CRSQNG O




3

¢ &

Note: The heuristic h(n) represents an estimate of the remaining distance to the goal.

3 Greedy Best-First Search

3.1 Algorithm Overview

Strategy:

o Always expand the node that appears closest to the goal based on the heuristic function
h(n).

Key Characteristics:

o Uses only the heuristic h(n), ignoring actual path cost
e Greedy approach - makes locally optimal choices

Fast but not guaranteed to find the optimal path

e Can be misled by poor heuristics



10

11

12

13

14

15

16

17

18

3.2 Greedy BFS: The ldea

Think of it like:

o Following the “scent” directly toward the goal, always choosing the path that seems to
lead most directly there.

Analogy:

o Like a person lost in a forest who always walks in the direction that feels closest to home,
without considering how difficult the terrain might be.

3.3 Greedy BFS Pseudocode

function GreedyBestFirstSearch(start, goal):
frontier = PriorityQueue()
frontier.add(start, h(start))
explored = empty set

while frontier is not empty:
current = frontier.pop() # Lowest h(n)

if current == goal:
return path

explored.add(current)
for each neighbor of current:
if neighbor not in explored:

frontier.add(neighbor, h(neighbor))

return failure

3.4 Step 0: Initialize

Starting State:

o Frontier: {S (h=6)}
o Explored: {}
e Current path: None



Current node: S (highlighted in gold)

3.5 Step 1: Expand S

Action:
o Explore neighbors of S
Updates:

o Frontier: {B (h=4), A (h=5)}
o Explored: {S}
e B has lower h-value, so it will be expanded next



3.6 Step 2: Expand B

Action:
o B has the lowest heuristic (h=4)
Updates:

o Frontier: {C (h=2), D (h=3), A (h=5)}
« Explored: {S, B}
¢ C has the lowest h-value



3.7 Step 3: Expand C

Action:
C has the lowest heuristic (h=2)

Updates:
o Frontier: {G (h=0), D (h=3), A (h=5)}

o Explored: {S, B, C}
e G is now in frontier!



3.8 Step 4: Reach Goal

Result:

o G has h=0 (lowest possible), expand it and find the goal!
Path Found:

e S=-B—=-C—=G
Path Cost:

e 14+2+2=5



3.9 Greedy BFS Results

Summary:

¢« Path: S—- B—->C—> G

e Cost: 5

e Nodes Explored: 4 (S, B, C, G)
e Optimal? We'll see...

Observation:

e The algorithm followed the heuristic values greedily, always choosing the node that seemed
closest to the goal.

10



10

11

12

13

14

4 Dijkstra’s Algorithm

4.1 Algorithm Overview

Strategy:

o Expand nodes in order of their actual distance g(n) from the start, guaranteeing the
shortest path.

Key Characteristics:

o Uses actual path cost g(n), ignoring heuristics
e Guarantees optimal solution
e More thorough exploration than Greedy BFS
e Uniform cost search variant

4.2 Dijkstra’s Algorithm: The Idea

Think of it like:
o Exploring all paths systematically by distance, like ripples expanding in water.
Analogy:

e Like carefully measuring every possible route with a measuring tape, always extending
the shortest path found so far.

4.3 Dijkstra Pseudocode

function Dijkstra(start, goal):
frontier = PriorityQueue()
frontier.add(start, 0)
g_scores = {start: 0}
explored = empty set

while frontier is not empty:
current = frontier.pop() # Lowest g(n)

if current == goal:
return path

explored.add(current)

11



15

16

17

18

19

20

21

22

for each neighbor of current with cost:
tentative_g = glcurrent] + cost
if neighbor not in explored or

tentative_g < glneighbor]:
glneighbor] = tentative_g

frontier.add(neighbor,

return failure

4.4 Step 0: Initialize

Starting State:

o Frontier: {S (g=0)}
o g-scores: {S: 0}
o Explored: {}

All nodes start with g=oo except start

tentative_g)

12



4.5 Step 1: Expand S

Action:
e Explore S and update neighbors
g-score Updates:

« gA)=0+4+2=2
e gB)=0+1=1

New State:

o Frontier: {B (g=1), A (g=2)}
o Explored: {S}

13



4.6 Step 2: Expand B

Action:
o B has lowest g-score (g=1)
g-score Updates:

e g(C)=1+4+2=3
e gD)=1+4=5

New State:

o Frontier: {A (g=2), C (g=3), D (g=5)}
o Explored: {S, B}

4.7 Step 3: Expand A

Action:

o A has lowest g-score (g=2)
g-score Updates:

e g(C) =2+ 3 =5 (no update, 3 is better)
New State:

o Frontier: {C (g=3), D (g=5)}

14



» Explored: {S, B, A}

(]

4.8 Step 4: Expand C

Action:

e C has lowest g-score (g=3)
g-score Updates:

e g(G)=3+2=5
New State:

o Frontier: {D (g=5), G (g=5)}
« Explored: {S, B, A, C}
e Tie between D and G!

15



4.9 Step 5: Expand D (or G)

Action:

o Break tie arbitrarily - let’s expand D first
g-score Updates:

e g(G) =5+ 1 =6 (no update, 5 is better!)
New State:

o Frontier: {G (g=5)}
o Explored: {S, B, A, C, D}

16




4.10 Step 6: Reach Goal

Result:

e G is expanded - goal reached!
Path Found:

e S=-B—=-C—=G

Path Cost:
1+24+2=5

17




4.11 Dijkstra Results

Summary:

e« Path: S- B —-C—> G

e Cost: 5

o Nodes Explored: 6 (S, B, A, C, D, G)
e Optimal? YES - guaranteed!

Observation:

¢ Dijkstra explored more nodes than Greedy BFS but found the same path. The key
difference: Dijkstra guarantees this is optimal.

4.12 Why Is This Path Optimal?

Alternative Path Analysis:

18



e S>A->C—->G=2+3+2=7 (worse)
e S»>B—-D—-G=1+4+1=6 (worse)
e SB—-C—->G=1+2+2=25 (best!)

Dijkstra checked all possibilities systematically and confirmed 5 is the minimum
cost.

5 A* Search Algorithm

5.1 Algorithm Overview

Strategy:
o Combine actual cost g(n) and heuristic h(n) using evaluation function f(n) = g(n) + h(n)
Key Characteristics:

o Uses both actual cost and heuristic information

o Optimal when heuristic is admissible (never overestimates)
e More efficient than Dijkstra with good heuristics

e Best of both worlds

5.2 A* Search: The ldea

Think of it like:

e A smart explorer who considers both how far they’ve traveled AND how far they estimate
they still need to go.

Analogy:

o Like planning a road trip where you consider both the miles already driven and your
GPS estimate of remaining distance.

19



10

11

12

13

14

15

16

17

18

19

20

21

22

23

5.3 A* Pseudocode

function AStar(start, goal):
frontier = PriorityQueue()
frontier.add(start, h(start))
g_scores = {start: 0}
explored = empty set

while frontier is not empty:
current = frontier.pop() # Lowest f(n)

if current == goal:
return path

explored.add(current)

for each neighbor of current with cost:
tentative_g = glcurrent] + cost
if neighbor not in explored or
tentative_g < glneighbor]:
glneighbor] = tentative_g

f [neighbor] = glneighbor] + h[neighbor]
frontier.add(neighbor, f[neighbor])

return failure

5.4 The f(n) Function

Evaluation Function:
e f(n) = g(n) + h(n)
Components:

o g(n) = actual cost from start to node n
e h(n) = estimated cost from node n to goal
o f(n) = estimated total cost of path through n

Intuition:

¢« We want to explore paths that have both low actual cost so far AND promise to reach

the goal efficiently.

20



5.5 Step 0: Initialize

Starting State:

o Frontier: {S (f=0+6=6)}
o g-scores: {S: 0}
o Explored: {}

5.6 Step 1: Expand S

Action:
o Calculate f-scores for neighbors
f-score Updates:

e A: g=2 h=5, =7
e B:g=1, h=4, =5

New State:

21



o Frontier: {B (f=5), A (f=7)}
o Explored: {S}

5.7 Step 2: Expand B

Action:
o B has lowest f-score (f=5)

f-score Updates:

New State:

o Frontier: {C (f=5), A (f=7), D (=8)}
o Explored: {S, B}

22



5.8 Step 3: Expand C

Action:

o C has lowest f-score (f=5)
f-score Updates:

o G:g=5,h=0, {=5
New State:

o Frontier: {G (f=5), A (f=7), D (f=8)}
o Explored: {S, B, C}

23



5.9 Step 4: Reach Goal

Result:

o G has lowest f-score (f=5) - goal reached!
Path Found:

e S=-B—=-C—=G
Path Cost:

e 14+2+2=5

24



5.10 A* Results

Summary:

Path: S - B - C = G

Cost: 5

Nodes Explored: 4 (S, B, C, G)
Optimal? YES (with admissible heuristic)

Observation:

o A* explored the same number of nodes as Greedy BFS (4) but with the optimality
guarantee of Dijkstral

5.11 Why A* Was Efficient

The Power of f(n):

25



e A* avoided exploring A and D because their f-scores indicated they wouldn’t lead to

better solutions.
Comparison:

o Node A: f=7 (higher than solution)
o Node D: f=8 (higher than solution)
e Solution path: all nodes had f5

This is why A* is often the best choice when a good heuristic is available.

6 Algorithm Comparison

6.1 Side-by-Side Results

Algorithm Path Cost Nodes Explored Optimal?
Greedy BFS S—B—C—G 5 4 Yes*
Dijkstra S—»B—-C—G 5 6 Yes

A* S—»B—-C—G 5 4 Yes

*Greedy BFS happened to find the optimal path but doesn’t guarantee it

6.2 Exploration Pattern Comparison

Dijkstra (g only)

A (f=g+h) 7
B g=1 ———» Cg=3
S f=6 ‘ ] B f=5 Cf5 }—»{ G =5 ‘ /
| ‘ Sg=0 \>
~_]

Ag=2

6.3 Performance Metrics

Time Complexity:

o All three: O((V + E) log V) with priority queue
o In practice, efficiency varies with heuristic quality

26

Dg=5

G g=5

Sh=6



Space Complexity:

o All three: O(V) for storing nodes
e A* may need more memory for f-scores

Optimality:

¢ Greedy BFS: No guarantee
¢ Dijkstra: Always optimal
o A*: Optimal with admissible heuristic

6.4 When to Use Each Algorithm

Greedy Best-First Search:

e When speed is critical and approximate solutions are acceptable
e When you have a very accurate heuristic
e Video games, real-time systems

Dijkstra’s Algorithm:

e When optimality is required and no heuristic is available
e When all edges have different costs
e Network routing, GPS without traffic data

A* Search:

e« When optimality is required and good heuristics exist
e Most pathfinding applications
o GPS with traffic data, game Al, robotics

6.5 Heuristic Quality Matters

Admissible Heuristics:
o Never overestimate the actual cost (h(n) actual cost)
Good Heuristics:

o Lead A* to explore fewer nodes
e Make A* more efficient than Dijkstra
o Examples: Euclidean distance, Manhattan distance

Poor Heuristics:

27



o If h(n) = 0 for all nodes, A* becomes Dijkstra
o If h(n) overestimates, A* may not be optimal
o Balance accuracy and computation time

7 Key Takeaways

7.1 Core Concepts

Three Different Strategies:

1. Greedy - Follow what looks best locally (fast, risky)
2. Systematic - Check everything methodically (slow, guaranteed)
3. Informed - Use knowledge to guide systematic search (efficient, guaranteed)

The Trade-off Triangle:

e Speed Optimality Information Requirements

7.2 Practical Applications

Real-World Impact:

o Google Maps uses A*-like algorithms

¢ Video games use optimized variants for NPC pathfinding
¢ Robots use these for navigation

¢ Network protocols use Dijkstra variants

Choosing the Right Algorithm:

e Consider your constraints and requirements before selecting an approach.

28



	Introduction
	The Problem Setup
	Greedy Best-First Search
	Dijkstra's Algorithm
	A* Search Algorithm
	Algorithm Comparison
	Key Takeaways

