Pathfinding Algorithms

CS 351: Analysis of Algorithms

Lucas P. Cordova, Ph.D.

This lecture reviews the three pathfinding algorithms we'll use in Project 2: Greedy Best-First Search, Dijkstra's Algorithm, and A^* .

Table of contents

1	Introduction	1
2	The Problem Setup	2
3	Greedy Best-First Search	4
4	Dijkstra's Algorithm	11
5	A* Search Algorithm	19
6	Algorithm Comparison	26
7	Key Takeaways	28

1 Introduction

1.1 What Are Pathfinding Algorithms?

Pathfinding algorithms find the optimal or near-optimal route between two points in a graph.

Applications:

- GPS navigation and route planning
- Video game AI and character movement
- Network routing protocols
- Robotics path planning

• Logistics and delivery optimization

1.2 Why Multiple Algorithms?

Different algorithms make different trade-offs:

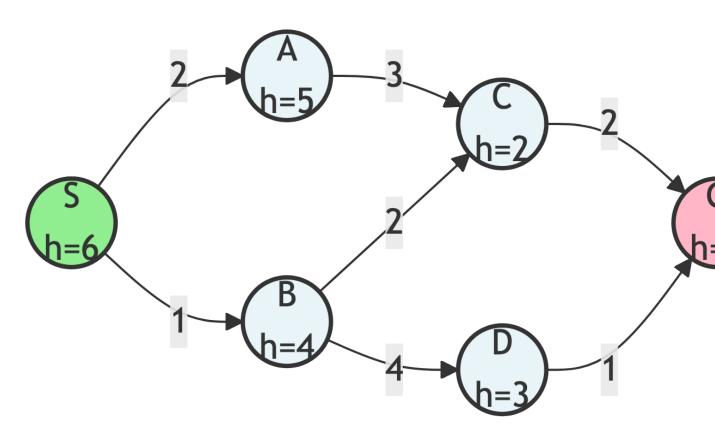
- Speed vs. Optimality Fast approximation vs. guaranteed shortest path
- Memory usage How much information needs to be stored
- Use of heuristics Leveraging domain knowledge for efficiency

Today we'll review the three fundamental approaches to pathfinding on the same problem.

2 The Problem Setup

2.1 Our Example Graph

We'll use a simple graph with 6 nodes to illustrate each algorithm:



Goal: Find a path from S (start) to G (goal)

2.2 Graph Components

Nodes:

- S (Start) our starting point
- A, B, C, D intermediate nodes
- G (Goal) our destination

Edge Costs:

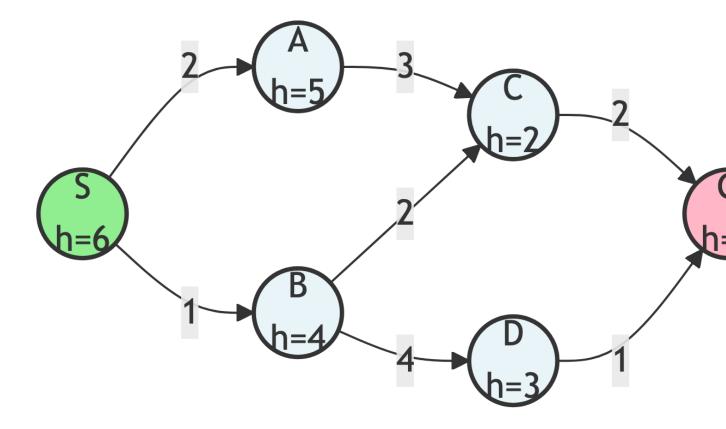
• The numbers on edges represent the actual cost to traverse the edge

Heuristic Values h(n):

- Estimated distance from each node to goal (shown below node names)
- This is a heuristic, an estimate of the remaining distance to the goal

2.3 Graph Data Table

Edge	Cost	Node	h(n)
$S \to A$	2	S	6
$\mathrm{S} \to \mathrm{B}$	1	A	5
$\mathbf{A} \to \mathbf{C}$	3	В	4
$\mathrm{B} \to \mathrm{C}$	2	\mathbf{C}	2
$\mathrm{B} \to \mathrm{D}$	4	D	3
$\mathrm{C} \to \mathrm{G}$	2	G	0
$\mathrm{D} o \mathrm{G}$	1		



Note: The heuristic h(n) represents an estimate of the remaining distance to the goal.

3 Greedy Best-First Search

3.1 Algorithm Overview

Strategy:

• Always expand the node that appears closest to the goal based on the heuristic function h(n).

Key Characteristics:

- Uses only the heuristic h(n), ignoring actual path cost
- Greedy approach makes locally optimal choices
- Fast but not guaranteed to find the optimal path
- Can be misled by poor heuristics

3.2 Greedy BFS: The Idea

Think of it like:

• Following the "scent" directly toward the goal, always choosing the path that seems to lead most directly there.

Analogy:

• Like a person lost in a forest who always walks in the direction that feels closest to home, without considering how difficult the terrain might be.

3.3 Greedy BFS Pseudocode

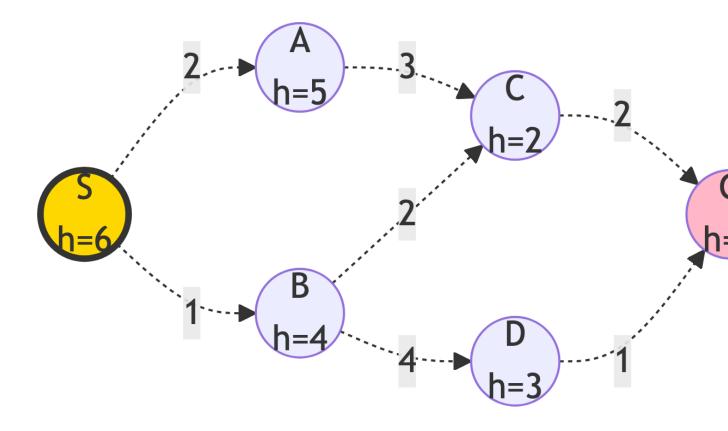
```
function GreedyBestFirstSearch(start, goal):
       frontier = PriorityQueue()
       frontier.add(start, h(start))
       explored = empty set
       while frontier is not empty:
           current = frontier.pop() # Lowest h(n)
           if current == goal:
               return path
11
           explored.add(current)
12
13
           for each neighbor of current:
14
                if neighbor not in explored:
15
                    frontier.add(neighbor, h(neighbor))
16
17
       return failure
```

3.4 Step 0: Initialize

Starting State:

- Frontier: {S (h=6)}Explored: {}
- Current path: None

Current node: S (highlighted in gold)



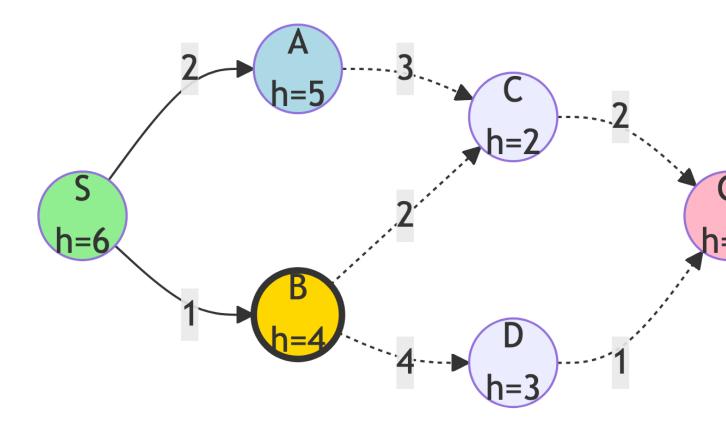
3.5 Step 1: Expand S

Action:

• Explore neighbors of S

Updates:

- Frontier: {B (h=4), A (h=5)}
- Explored: $\{S\}$
- B has lower h-value, so it will be expanded next



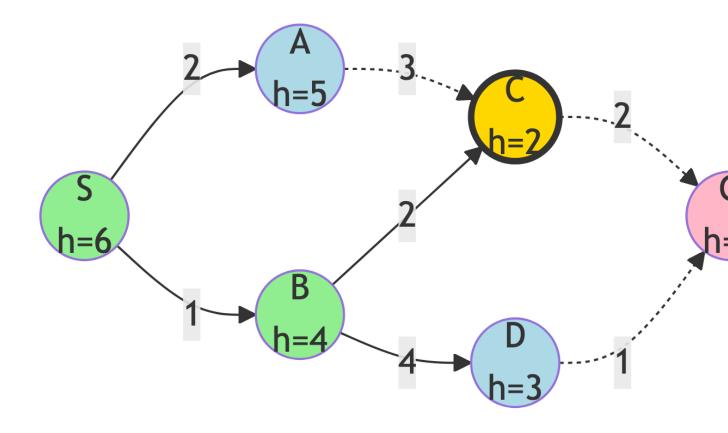
3.6 Step 2: Expand B

Action:

• B has the lowest heuristic (h=4)

Updates:

- Frontier: {C (h=2), D (h=3), A (h=5)}
- Explored: $\{S, B\}$
- C has the lowest h-value



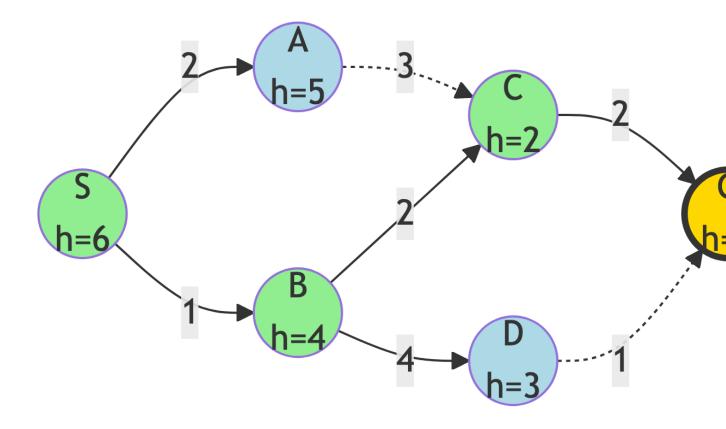
3.7 Step 3: Expand C

Action:

C has the lowest heuristic (h=2)

Updates:

- Frontier: $\{G (h=0), D (h=3), A (h=5)\}$
- Explored: $\{S, B, C\}$
- G is now in frontier!



3.8 Step 4: Reach Goal

Result:

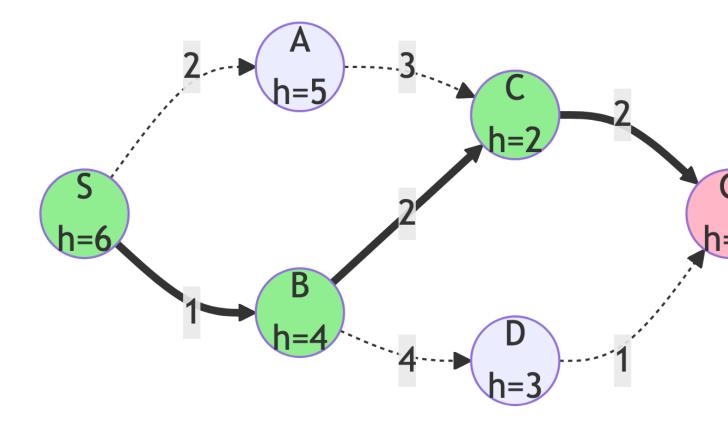
• G has h=0 (lowest possible), expand it and find the goal!

Path Found:

•
$$S \rightarrow B \rightarrow C \rightarrow G$$

Path Cost:

•
$$1 + 2 + 2 = 5$$



3.9 Greedy BFS Results

Summary:

• Path: $S \to B \to C \to G$

• Cost: 5

• Nodes Explored: 4 (S, B, C, G)

• Optimal? We'll see...

Observation:

• The algorithm followed the heuristic values greedily, always choosing the node that seemed closest to the goal.

4 Dijkstra's Algorithm

4.1 Algorithm Overview

Strategy:

• Expand nodes in order of their actual distance g(n) from the start, guaranteeing the shortest path.

Key Characteristics:

- Uses actual path cost g(n), ignoring heuristics
- Guarantees optimal solution
- More thorough exploration than Greedy BFS
- Uniform cost search variant

4.2 Dijkstra's Algorithm: The Idea

Think of it like:

• Exploring all paths systematically by distance, like ripples expanding in water.

Analogy:

• Like carefully measuring every possible route with a measuring tape, always extending the shortest path found so far.

4.3 Dijkstra Pseudocode

```
function Dijkstra(start, goal):
       frontier = PriorityQueue()
2
       frontier.add(start, 0)
3
       g_scores = {start: 0}
       explored = empty set
       while frontier is not empty:
           current = frontier.pop() # Lowest g(n)
           if current == goal:
10
                return path
11
12
           explored.add(current)
13
14
```

```
for each neighbor of current with cost:

tentative_g = g[current] + cost

if neighbor not in explored or

tentative_g < g[neighbor]:

g[neighbor] = tentative_g

frontier.add(neighbor, tentative_g)

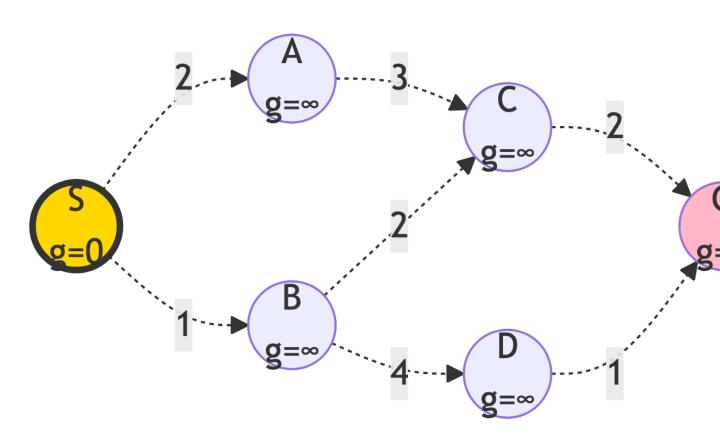
return failure
```

4.4 Step 0: Initialize

Starting State:

Frontier: {S (g=0)}g-scores: {S: 0}Explored: {}

All nodes start with $g=\infty$ except start



4.5 Step 1: Expand S

Action:

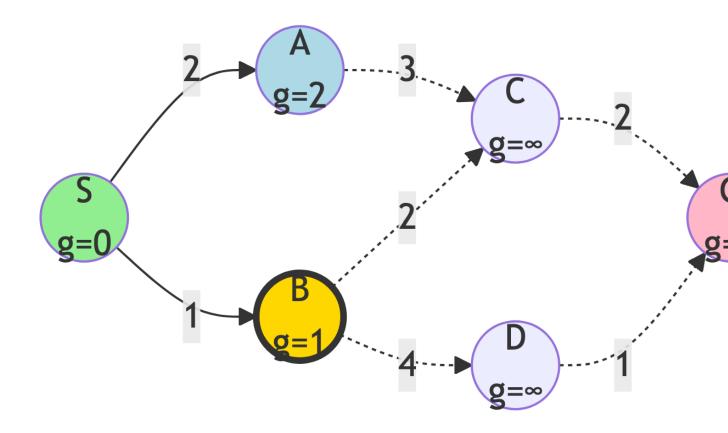
• Explore S and update neighbors

g-score Updates:

- g(A) = 0 + 2 = 2• g(B) = 0 + 1 = 1

New State:

- Frontier: {B (g=1), A (g=2)}
- Explored: {S}



4.6 Step 2: Expand B

Action:

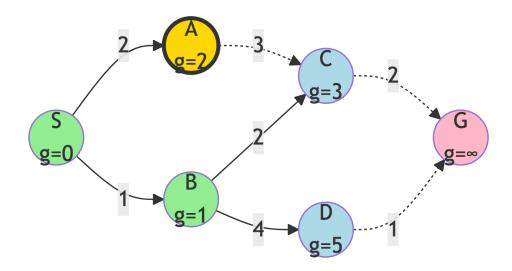
• B has lowest g-score (g=1)

g-score Updates:

- g(C) = 1 + 2 = 3
- g(D) = 1 + 4 = 5

New State:

- Frontier: $\{A (g=2), C (g=3), D (g=5)\}$
- Explored: $\{S, B\}$



4.7 Step 3: Expand A

Action:

• A has lowest g-score (g=2)

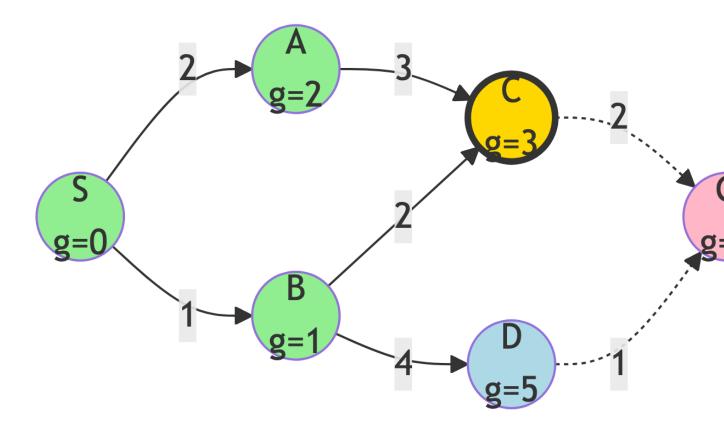
g-score Updates:

• g(C) = 2 + 3 = 5 (no update, 3 is better)

New State:

• Frontier: $\{C (g=3), D (g=5)\}$

• Explored: $\{S, B, A\}$



4.8 Step 4: Expand C

Action:

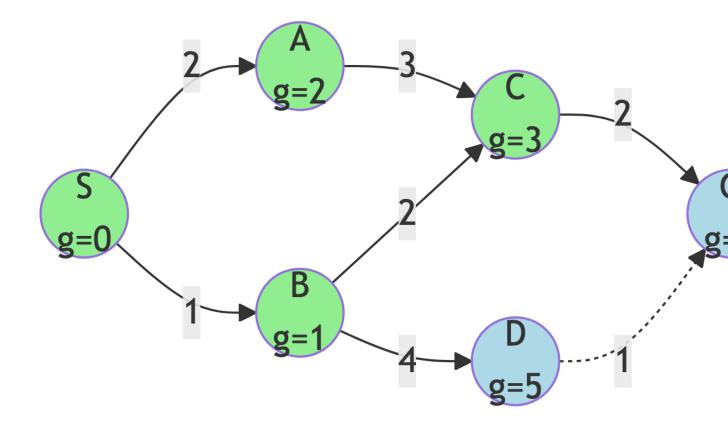
• C has lowest g-score (g=3)

g-score Updates:

• g(G) = 3 + 2 = 5

New State:

- Frontier: {D (g=5), G (g=5)}
- Explored: $\{S, B, A, C\}$
- Tie between D and G!



4.9 Step 5: Expand D (or G)

Action:

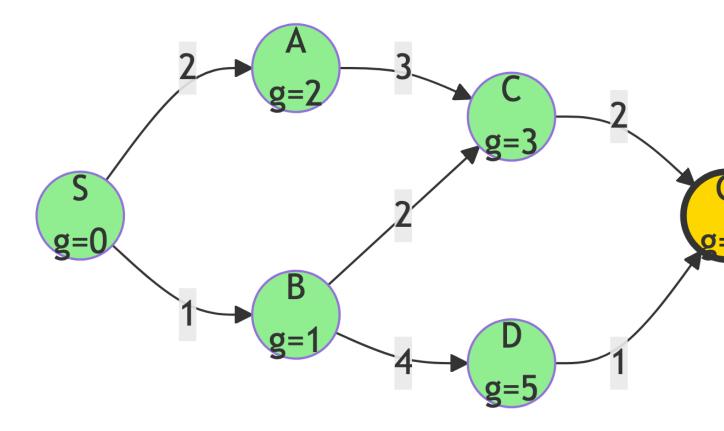
• Break tie arbitrarily - let's expand D first

g-score Updates:

• g(G) = 5 + 1 = 6 (no update, 5 is better!)

New State:

- Frontier: {G (g=5)}
 Explored: {S, B, A, C, D}



4.10 Step 6: Reach Goal

Result:

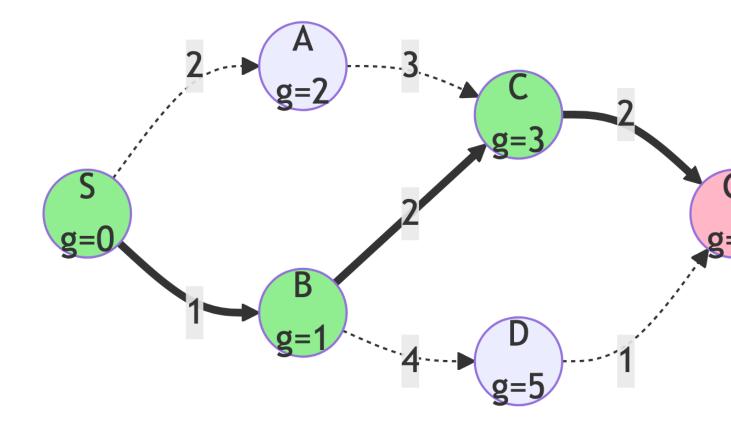
• G is expanded - goal reached!

Path Found:

•
$$S \rightarrow B \rightarrow C \rightarrow G$$

Path Cost:

$$1 + 2 + 2 = 5$$



4.11 Dijkstra Results

Summary:

• Path: $S \to B \to C \to G$

• Cost: 5

• Nodes Explored: 6 (S, B, A, C, D, G)

• Optimal? YES - guaranteed!

Observation:

• Dijkstra explored more nodes than Greedy BFS but found the same path. The key difference: Dijkstra guarantees this is optimal.

4.12 Why Is This Path Optimal?

Alternative Path Analysis:

- $S \rightarrow A \rightarrow C \rightarrow G = 2 + 3 + 2 = 7$ (worse)
- $S \rightarrow B \rightarrow D \rightarrow G = 1 + 4 + 1 = 6$ (worse)
- $S \to B \to C \to G = 1 + 2 + 2 = 5 \text{ (best!)}$

Dijkstra checked all possibilities systematically and confirmed 5 is the minimum cost.

5 A* Search Algorithm

5.1 Algorithm Overview

Strategy:

• Combine actual cost g(n) and heuristic h(n) using evaluation function f(n) = g(n) + h(n)

Key Characteristics:

- Uses both actual cost and heuristic information
- Optimal when heuristic is admissible (never overestimates)
- More efficient than Dijkstra with good heuristics
- Best of both worlds

5.2 A* Search: The Idea

Think of it like:

• A smart explorer who considers both how far they've traveled AND how far they estimate they still need to go.

Analogy:

• Like planning a road trip where you consider both the miles already driven and your GPS estimate of remaining distance.

5.3 A* Pseudocode

```
function AStar(start, goal):
        frontier = PriorityQueue()
        frontier.add(start, h(start))
        g_scores = {start: 0}
4
        explored = empty set
        while frontier is not empty:
            current = frontier.pop() # Lowest f(n)
            if current == goal:
10
                return path
11
12
            explored.add(current)
13
14
            for each neighbor of current with cost:
                tentative_g = g[current] + cost
16
                if neighbor not in explored or
17
                    tentative_g < g[neighbor]:</pre>
18
                    g[neighbor] = tentative_g
19
                    f[neighbor] = g[neighbor] + h[neighbor]
20
                    frontier.add(neighbor, f[neighbor])
^{21}
22
        return failure
23
```

5.4 The f(n) Function

Evaluation Function:

• f(n) = g(n) + h(n)

Components:

- g(n) = actual cost from start to node n
- h(n) = estimated cost from node n to goal
- f(n) =estimated total cost of path through n

Intuition:

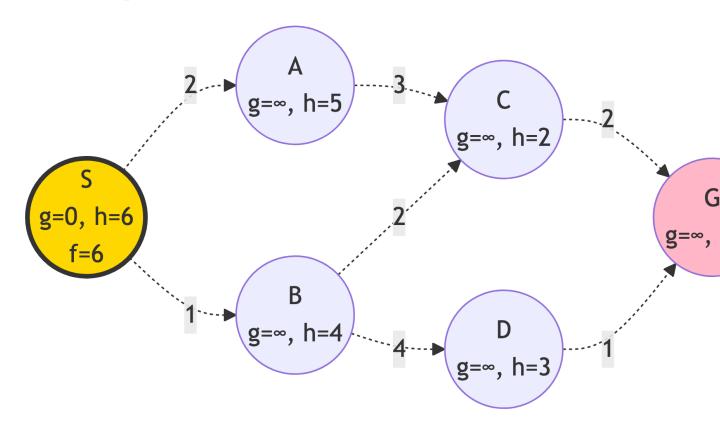
• We want to explore paths that have both low actual cost so far AND promise to reach the goal efficiently.

5.5 Step 0: Initialize

Starting State:

• Frontier: $\{S (f=0+6=6)\}$

g-scores: {S: 0} Explored: {}



5.6 Step 1: Expand S

Action:

• Calculate f-scores for neighbors

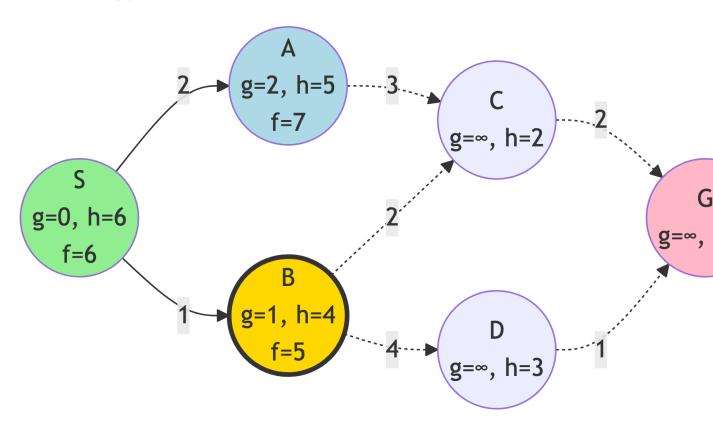
f-score Updates:

- A: g=2, h=5, f=7
- B: g=1, h=4, f=5

New State:

• Frontier: $\{B (f=5), A (f=7)\}$

• Explored: {S}



5.7 Step 2: Expand B

Action:

• B has lowest f-score (f=5)

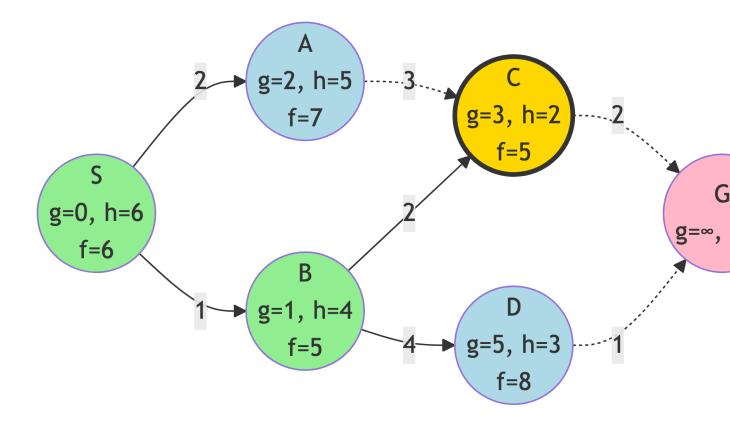
f-score Updates:

- C: g=3, h=2, f=5
- D: g=5, h=3, f=8

New State:

• Frontier: $\{C (f=5), A (f=7), D (f=8)\}$

• Explored: {S, B}



5.8 Step 3: Expand C

Action:

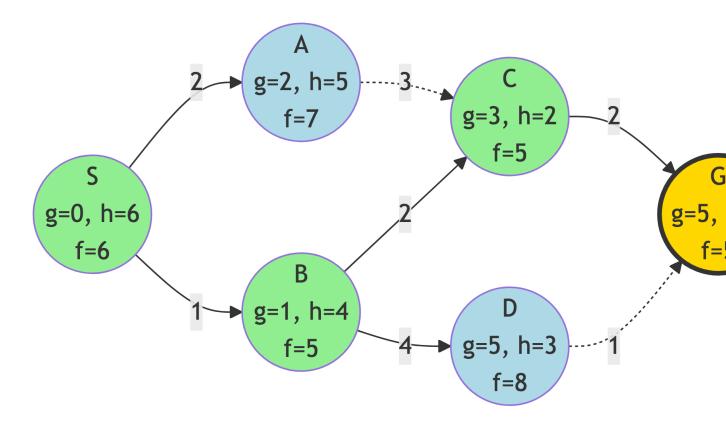
• C has lowest f-score (f=5)

f-score Updates:

• G: g=5, h=0, f=5

New State:

- Frontier: $\{G (f=5), A (f=7), D (f=8)\}$
- Explored: $\{S, B, C\}$



5.9 Step 4: Reach Goal

Result:

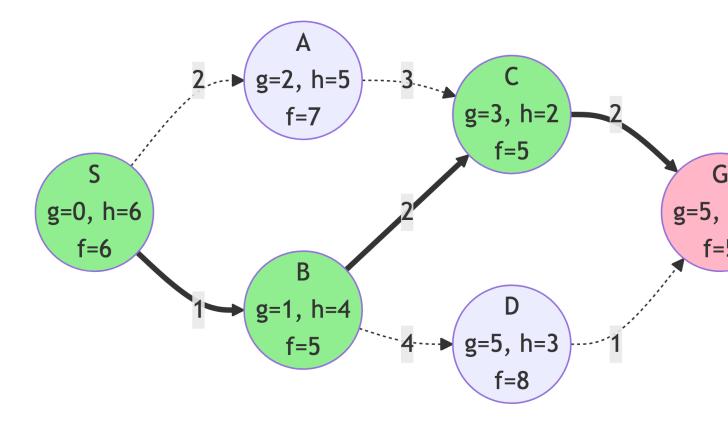
• G has lowest f-score (f=5) - goal reached!

Path Found:

•
$$S \rightarrow B \rightarrow C \rightarrow G$$

Path Cost:

•
$$1 + 2 + 2 = 5$$



5.10 A* Results

Summary:

- Path: $S \to B \to C \to G$
- Cost: 5
- Nodes Explored: 4 (S, B, C, G)
- Optimal? YES (with admissible heuristic)

Observation:

• A* explored the same number of nodes as Greedy BFS (4) but with the optimality guarantee of Dijkstra!

5.11 Why A* Was Efficient

The Power of f(n):

• A* avoided exploring A and D because their f-scores indicated they wouldn't lead to better solutions.

Comparison:

- Node A: f=7 (higher than solution)
- Node D: f=8 (higher than solution)
- Solution path: all nodes had f 5

This is why A^* is often the best choice when a good heuristic is available.

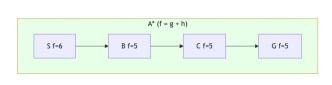
6 Algorithm Comparison

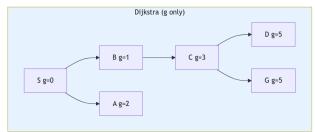
6.1 Side-by-Side Results

Algorithm	Path	Cost	Nodes Explored	Optimal?
Greedy BFS	$S \rightarrow B \rightarrow C \rightarrow G$	5	4	Yes*
Dijkstra	$S{\rightarrow}B{\rightarrow}C{\rightarrow}G$	5	6	Yes
A*	$S{\to}B{\to}C{\to}G$	5	4	Yes

^{*}Greedy BFS happened to find the optimal path but doesn't guarantee it

6.2 Exploration Pattern Comparison





6.3 Performance Metrics

Time Complexity:

- All three: $O((V + E) \log V)$ with priority queue
- In practice, efficiency varies with heuristic quality

Space Complexity:

- All three: O(V) for storing nodes
- A* may need more memory for f-scores

Optimality:

- Greedy BFS: No guarantee
- Dijkstra: Always optimal
- A*: Optimal with admissible heuristic

6.4 When to Use Each Algorithm

Greedy Best-First Search:

- When speed is critical and approximate solutions are acceptable
- When you have a very accurate heuristic
- Video games, real-time systems

Dijkstra's Algorithm:

- When optimality is required and no heuristic is available
- When all edges have different costs
- Network routing, GPS without traffic data

A* Search:

- When optimality is required and good heuristics exist
- Most pathfinding applications
- GPS with traffic data, game AI, robotics

6.5 Heuristic Quality Matters

Admissible Heuristics:

• Never overestimate the actual cost (h(n) actual cost)

Good Heuristics:

- Lead A* to explore fewer nodes
- Make A^* more efficient than Dijkstra
- Examples: Euclidean distance, Manhattan distance

Poor Heuristics:

- If h(n) = 0 for all nodes, A^* becomes Dijkstra
- If h(n) overestimates, A* may not be optimal
- Balance accuracy and computation time

7 Key Takeaways

7.1 Core Concepts

Three Different Strategies:

- 1. **Greedy** Follow what looks best locally (fast, risky)
- 2. **Systematic** Check everything methodically (slow, guaranteed)
- 3. **Informed** Use knowledge to guide systematic search (efficient, guaranteed)

The Trade-off Triangle:

• Speed Optimality Information Requirements

7.2 Practical Applications

Real-World Impact:

- Google Maps uses A*-like algorithms
- Video games use optimized variants for NPC pathfinding
- Robots use these for navigation
- Network protocols use Dijkstra variants

Choosing the Right Algorithm:

• Consider your constraints and requirements before selecting an approach.