Syllabus Highlights

CS 351: Algorithms - Fall 2025

Lucas P. Cordova, Ph.D.

2025-08-25

♀ Slide Notes or Announcements

None

i Alternative Formats

- Slides
- Outline
- PDF

Welcome to CS 351: Algorithms!

Course Information

• Meeting Time: MWF 10:20 - 11:20 AM

Location: Smullin B17
Instructor: Lucas Cordova
Embedded TA: Sam Holmes

Course Overview

What We'll Study

- Advanced algorithm design paradigms
- Complexity analysis and Big-O notation
- Graph algorithms and network flows
- Dynamic programming techniques
- Computational complexity theory (P vs NP)
- · Critical evaluation of AI-generated solutions

Learning Outcomes

By Course End, You Will:

- 1. **Design & Analyze** algorithms using major paradigms
- 2. **Implement** advanced data structures
- 3. Solve complex graph problems
- 4. **Analyze** computational complexity
- 5. **Prove** algorithm correctness
- 6. **Select** appropriate algorithmic approaches
- 7. **Apply** algorithms to real-world problems
- 8. Evaluate AI-generated solutions critically

Course Materials

Required Resources

- Primary Text: Algorithms Illuminated (Omnibus Edition)
 - ► Author: Tim Roughgarden
 - ► Available at: algorithmsilluminated.org
- Canvas: All course materials and assignments
- Hardware: Laptop required for in-class activities

Assessment Structure

Grade Distribution

Component	Weight
Attendance, Participation, Quizzes	15%
Homework Assignments (~10)	25%
Programming Projects (3)	30%
Student Contributed Lecture	10%
Midterm Exam	10%
Final Exam	10%

Programming Projects

Three Major Projects

- 1. Divide-and-Conquer Project
 - Recursive algorithms and mergesort
 - Performance visualization
- 2. Dynamic Programming Project
 - Complex DP implementations

• Edit distance, knapsack variations

3. Graph Algorithms Project

- Network flow modeling
- Real-world scenario implementation

Student Contributed Lecture

Your Teaching Opportunity

- · Work in groups of 3
- Research and present on chosen algorithm topic
- · Lead class discussion
- Develop presentation and teaching skills
- Scheduled during weeks 13-15

Important Dates

Mark Your Calendars

- First Day: Monday, August 25, 2025
- Midterm Exam: October 22, 2025 (Week 9)
- Thanksgiving Break: November 26-28, 2025
- Last Day of Classes: December 3, 2025
- Final Exam: December 9, 2025, 8:00-11:00 AM

Course Schedule Overview

Weekly Topics Flow

- Weeks 1-2: Fundamentals & Big-O
- Weeks 3-4: Divide-and-Conquer, Sorting
- Weeks 5-7: Graph Algorithms, Greedy Methods
- Weeks 8-9: Dynamic Programming, MIDTERM
- Weeks 10-11: Network Flows
- Weeks 12-13: Complexity Theory, NP-Completeness
- Weeks 14-15: Student Lectures & Review

Office Hours

Getting Help

Professor Office Hours

- Monday: 1:15 2:15 PM
- Tuesday: 10:00 11:00 AM
- Wednesday: 1:15 2:15 PM
- Thursday: 10:00 11:00 AM
- Location: Ford 210

• Appointments: 15-minute slots available

TA: Sam Holmes

• Email: srholmes@willamette.edu

• Office hours: TBD

Course Policies

Attendance & Participation

• Attendance is essential - tracked through activities

• Participation activities cannot be made up

• Notify instructor ASAP for emergencies

Late Work Policy

• Homework: 3 late tokens for semester (use wisely!)

• Projects: -10% per day, max 5 days late

• Participation: No makeups

Academic Integrity

Allowed Collaboration ✓

- Discussing problem-solving strategies
- Sharing conceptual insights
- Debugging approaches
- Understanding course concepts together

Prohibited Actions ×

- Copying code or solutions
- Sharing your code with others
- Using solutions from previous semesters
- Submitting AI-generated code without modification/disclosure

Grading Scale

Letter Grade Thresholds

Grade	Range	Grade	Range
A	≥ 92.00	С	72.00-77.99
A-	90.00-91.99	C-	70.00-71.99
B+	88.00-89.99	D+	68.00-69.99
В	82.00-87.99	D	62.00-67.99
B-	80.00-81.99	D-	60.00-61.99

Grade	Range	Grade	Range
		F	≤ 59.99

Support Resources

Academic Support

- SOAR Center: Free food, clothing, textbooks (PUC 3rd floor)
- Tutoring Services: Academic Resource Center
- IT Support: Software and hardware assistance
- Accessible Education Services: Matthews 103

Time Commitment

- Expect 6-9 hours per week outside class
- Reading, homework, projects, exam prep
- Consistent effort required!

Creating an Inclusive Environment

Our Classroom Community

- · Affirmed names and pronouns respected
- · Diverse perspectives welcomed
- Collaborative learning encouraged
- Questions always welcome
- Mistakes are learning opportunities

Accessibility

- · Contact AES for accommodations
- Talk to me about any concerns
- We'll work together for your success

Ready to Master Algorithms?

Key Takeaways

- Algorithms are fundamental to CS
- Theory meets practice in this course
- · Active participation is crucial
- Multiple support resources available
- AI evaluation skills are now essential

Questions?

Let's have a great semester exploring the fascinating world of algorithms!

Next Topic: Introduction to Algorithm Analysis & Big-O Notation

Reading: Chapters 1-2 in Algorithms Illuminated