2D Game Design Workshop - Part 2

Unity Fundamentals: Movement, Physics, and Collisions

Lucas P. Cordova, Ph.D.

In this workshop, you’ll practice the fundamentals of 2D game development in
Unity. By the end of Part 1, you’ll have created a simple car game with movement
controls, physics interactions, and a dynamic camera system.

This workshop is divided into three parts: - Part 1: Unity Fundamentals (this
part) - Part 2: Enhancing Your Game with Physics and Collisions - Part 3: Polishing
and Expanding Your Game

Each part builds upon the previous one, so be sure to complete them in order.

Table of contents

9

Workshop Overview

Part 2 Starter Project

Step 1: Understanding Physics Components
Step 2: Collision Detection Rules

Step 3: Add Physics to Your Car

Step 4: Add a Collider to Your Car

Step 5: Create a Static Wall

Step 6: Create a Dynamic Box

Step 7: Create a Trigger Zone

10 Step 8: Add Collision Detection Code

11 Step 9: Add Trigger Detection Code

12 Step 10: Test Collision Detection 7

13 Step 11: Install Cinemachine 8
14 Step 12: Setup Cinemachine Brain 9
15 Step 13: Create Virtual Camera 9
16 Step 14: Test the Camera 9
17 Testing Checklist 9
18 Troubleshooting Guide 10
19 Resources and References 11
20 Conclusion 12

1 Workshop Overview

In this three-part series, you'll learn the fundamentals of 2D game development in Unity. By
the end of Part 2, you’ll have created a simple car game with movement controls, physics
interactions, and a dynamic camera system.

1.1 Learning Objectives

By completing Part 2, you will: - Work with Rigidbody2D and Collider2D components - Handle
collision and trigger events - Set up a Cinemachine camera to follow your player

2 Part 2 Starter Project

If you haven’t already, please complete Part 1 of the workshop to create the starter project for
Part 2. Alternatively, you can clone the completed Part 1 project from here.

./part1.qmd
https://github.com/LucasCordova/UnityClassDemo2D

3 Step 1: Understanding Physics Components

3.1 Key Physics Concepts

3.1.1 Colliders

Define the physical boundaries of GameObjects

e Determine what can be “hit” or “touched”
e Come in various shapes: Box, Circle, Polygon, Capsule
o Can be triggers (detect overlap) or solid (prevent overlap)

3.1.2 Rigidbodies

Add physics simulation to GameObjects

o Enable gravity, forces, and realistic movement
¢ Required for physics-based collisions
e Control mass, drag, and other physical properties

4 Step 2: Collision Detection Rules

4.1 When Collisions Are Detected

GameObject A GameObject B Result
Collider only Collider only No collision detected
Collider + Rigidbody Collider only Collision detected

Collider + Rigidbody

Collider + Rigidbody Collision detected

@ Best Practice

detect the collision.

At least one GameObject in a collision must have a Rigidbody component for Unity to

5 Step 3: Add Physics to Your Car

5.1 Adding Components to Your Car

1. Select the Car in the Hierarchy

2. Add a Rigidbody2D:

e Click “Add Component” in the Inspector
e Search for “Rigidbody2D”
e Click to add it

3. Configure the Rigidbody2D:

o Set Gravity Scale to 0 (we don’t want the car falling)
e Set Linear Damping to 1 (adds some resistance)
e Set Angular Damping to 1 (slows rotation)

6 Step 4: Add a Collider to Your Car

6.1 Completing the Physics Setup
1. With the Car still selected
2. Add a Collider2D:

e Click “Add Component”
e Choose “Capsule Collider 2D”
o It should automatically fit your sprite

7 Step 5: Create a Static Wall

7.1 Static Obstacle (Wall)

1. Create a Square sprite:

¢ Right-click in Hierarchy — 2D Object — Sprites — Square
¢ Rename to “Wall”

2. Position and scale:

o Position: (5, 0, 0)
e Scale: (1, 3, 1) to make it tall

3. Add a Box Collider 2D:

¢ Add Component — Box Collider 2D
o No Rigidbody needed (static object)

4. Change color (optional):

e Set Sprite Renderer color to grayb

8 Step 6: Create a Dynamic Box

8.1 Dynamic Obstacle (Box)

1. Create another Square sprite:

¢ Right-click in Hierarchy — 2D Object — Sprites — Square
¢ Rename to “Box”

2. Position:
o Position: (-3, 2, 0)
3. Add physics components:

¢ Add Component — Box Collider 2D
¢ Add Component — Rigidbody2D
e Set Gravity Scale to 0

4. Change color (optional):

e Set Sprite Renderer color to brown

9 Step 7: Create a Trigger Zone

9.1 Trigger Zone (Checkpoint)

1. Create a Circle sprite:

¢ Right-click in Hierarchy — 2D Object — Sprites — Circle
¢ Rename to “Checkpoint”

2. Position and scale:

e Position: (0, 5, 0)
o Scale: (2,2,1)

3. Add and configure collider:

¢ Add Component — Circle Collider 2D

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

e Check “Is Trigger” checkbox
4. Change appearance:

e Set Sprite Renderer color to green
e Set Color alpha to 0.5 for transparency

10 Step 8: Add Collision Detection Code

10.1 Implementing Collision Methods

Create a script called Collision to include collision detection:

using UnityEngine;
using UnityEngine.InputSystem;

public class Collision : MonoBehaviour

{
[SerializeField] float moveSpeed = 5f;
[SerializeField] float steerSpeed = 100;
// Called when this collider/rigidbody hits another collider/rigidbody
void OnCollisionEnter2D(Collision2D collision)
{
Debug.Log($"Car crashed into: {collision.gameObject.name}");
// Different reactions based on what we hit
if (collision.gameObject.name == "Wall")
{
Debug.Log("Ouch! Hit a wall!");
}
else if (collision.gameObject.name == "Box")
{
Debug.Log("Pushed a box!");
}
}
}

11 Step 9: Add Trigger Detection Code

11.1 Complete Collision and Trigger Detection

Add these methods to your Cruise script (after the Update method):

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// Called when collision ends
void OnCollisionExit2D(Collision2D collision)
{

Debug.Log($"Car separated from: {collision.gameObject.namel}");

// Called when entering a trigger zone
void OnTriggerEnter2D(Collider2D other)

{
Debug.Log($"Car entered trigger: {other.gameObject.name}");
if (other.gameObject.name == "Checkpoint")
{
Debug.Log("Checkpoint reached!");
// You could add score, play sound, etc.
}
}

// Called when exiting a trigger zone
void OnTriggerExit2D(Collider2D other)
{
Debug.Log($"Car exited trigger: {other.gameObject.namel}");

12 Step 10: Test Collision Detection

12.1 Testing Your Physics

1. Open the Console Window:

¢ Window — General — Console
e Dock it somewhere visible

2. Play the game and test:

e Cruise into walls - see “crashed into” messages

e Push boxes around - see collision messages
e Cruise through checkpoints - see trigger messages

1 Collision vs Trigger Events
OnCollisionEnter2D / OnCollisionExit2D:

o Physical collisions where objects bounce/push
e Both objects need colliders, at least one needs Rigidbody2D
e Objects cannot pass through each other

OnTriggerEnter2D / OnTriggerExit2D:

e Detection zones where objects can pass through
¢ Collider must have “Is Trigger” checked
e Used for checkpoints, power-ups, detection areas

13 Step 11: Install Cinemachine

13.1 Adding the Cinemachine Package

1. Open Package Manager:
e Window — Package Manager
2. Select Unity Registry:
e Dropdown at top-left — Unity Registry
3. Search for Cinemachine:
e Type “Cinemachine” in search bar
4. Install:

¢ Click on Cinemachine package
e Click “Install” button
o Wait for installation to complete and then close the package manager

14 Step 12: Setup Cinemachine Brain

14.1 Configure Main Camera

1. Add CinemachineCamera:

¢ Right-click the Scene in the Hieararchy and select Cinemachine — Cinemachine
Camera

e Set the Tracking Target to the Car GameObject

o Change the Orthographic Size to 6 (zoom level)

e Change the Positional Control to “Positional Composer”

e Leave default settings

15 Step 13: Create Virtual Camera

15.1 Adding the Follow Camera

1. Create Virtual Camera:

¢ Right-click in Hierarchy
o Cinemachine — Targeted Camera — Follow Camera
¢ Rename to “CarFollowCamera”

16 Step 14: Test the Camera

16.1 Verify Camera Following

Press Play

Cruise your car around using WASD

Notice how the camera smoothly follows your car

Try adjusting Damping values (1-3) to see different follow speeds

=

17 Testing Checklist

Before submitting your project, ensure all features work correctly:

17.1 Movement

O Car moves forward with W key or Up Arrow

[0 Car moves backward with S key or Down Arrow
O Car turns left with A key or Left Arrow

00 Car turns right with D key or Right Arrow

[0 Movement is smooth and frame-rate independent

17.2 Physics

[0 Car collides with walls and stops
[0 Car can push boxes around

[Boxes collide with walls

[0 Console shows collision messages

17.3 Triggers

[0 Car can Cruise through checkpoints
O Console shows checkpoint messages
[0 Checkpoints appear semi-transparent

17.4 Camera

[0 Camera follows the car smoothly
O Car stays centered in view
[0 Camera movement has appropriate damping

18 Troubleshooting Guide

18.1 Common lIssues and Solutions
18.1.1 Car doesn’t move / Keyboard not responding

e Check if the Input System is enabled (Edit — Project Settings — Player — Active Input
Handling)

e Ensure Cruise script is attached to Car

e Verify speed values aren’t 0

o Ensure Time Scale is 1 (Edit — Project Settings — Time)

o Make sure Game view has focus (click inside it)

10

18.1.2 NullReferenceException with Keyboard.current

e The Input System Package may not be installed
¢ Go to Window — Package Manager

e Search for “Input System” and install it
Restart Unity when prompted

18.1.3 Collisions not detected

o Ensure at least one object has Rigidbody2D
e Check that both objects have Collider2D components
e Verify colliders aren’t set as triggers when they shouldn’t be

18.1.4 Car falls or flies away

e Set Rigidbody2D Gravity Scale to 0
e Check Body Type is “Dynamic”
o Freeze Z rotation if car spins uncontrollably

18.1.5 Camera doesn’t follow

e Verify Car is assigned to Virtual Camera’s Follow field
e Check Cinemachine Brain is on Main Camera

19 Resources and References

19.1 Unity Documentation

e Unity 2D Documentation

e Input System Documentation
e Transform Component

¢ Rigidbody2D

e Collider2D Overview

¢ Cinemachine Documentation

11

https://docs.unity3d.com/Manual/Unity2D.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.7/manual/index.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Rigidbody2D.html
https://docs.unity3d.com/Manual/Collider2D.html
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.9/manual/index.html

19.2 Keyboard Shortcuts

o Play/Stop: Ctrl/Cmd + P

o Pause: Ctrl/Cmd + Shift + P

o Save Scene: Ctrl/Cmd + S

o Duplicate: Ctrl/Cmd + D

¢ Delete: Delete key

e Undo: Ctrl/Cmd + Z

o Focus GameObject: F key (with object selected)

19.3 Best Practices Learned

Always use Time.deltaTime for movement

Use modern Input System (Keyboard.current) for input handling
Organize your Hierarchy with empty GameObjects

Test frequently during development

Use Debug.Log for troubleshooting

Save your work often

SNl o

20 Conclusion

Congratulations on completing Part 2 of the 2D Game Design Workshop! You've learned
fundamental Unity concepts including transforms, physics, collisions, and camera systems.
These skills form the foundation for any 2D game development project.

In Part 3, you’ll enhance your game further by adding art assets, sound effects, and polishing
gameplay mechanics. Keep experimenting and building on what you’ve learned!

12

	Workshop Overview
	Part 2 Starter Project
	Step 1: Understanding Physics Components
	Step 2: Collision Detection Rules
	Step 3: Add Physics to Your Car
	Step 4: Add a Collider to Your Car
	Step 5: Create a Static Wall
	Step 6: Create a Dynamic Box
	Step 7: Create a Trigger Zone
	Step 8: Add Collision Detection Code
	Step 9: Add Trigger Detection Code
	Step 10: Test Collision Detection
	Step 11: Install Cinemachine
	Step 12: Setup Cinemachine Brain
	Step 13: Create Virtual Camera
	Step 14: Test the Camera
	Testing Checklist
	Troubleshooting Guide
	Resources and References
	Conclusion

